Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Phys Chem Chem Phys ; 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32662500


Covalency is complex yet central to our understanding of chemical bonding, particularly in the actinide series. Here we assess covalency in a series of isostructural d and f transition element compounds M(OC6H5)4 (M = Ti, Zr, Hf, Ce, Th, Pa, U, Np) using scalar relativistic hybrid density functional theory in conjunction with the Natural Bond Orbital (NBO), quantum theory of atoms in molecules (QTAIM) and interacting quantum atoms (IQA) approaches. The IQA exchange-correlation covalency metric is evaluated for the first time for actinides other than uranium, in order to assess its applicability in the 5f series. It is found to have excellent correlation with NBO and QTAIM covalency metrics, making it a promising addition to the computational toolkit for analysing metal-ligand bonding. Our range of metrics agree that the actinide-oxygen bonds are the most covalent of the elements studied, with those of the heavier group 4 elements the least. Within the early actinide series, Th stands apart from the other three elements considered, being consistently the least covalent.

Dalton Trans ; 48(9): 2939-2947, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30720806


A series of compounds M(OC6H5)4 (M = Ti, Zr, Hf, Ce, Th, U) is studied with hybrid density functional theory, to assess M-O bond covalency. The series allows for the comparison of d and f element compounds that are structurally similar. Two well-established analysis methods are employed: Natural Bond Orbital and the Quantum Theory of Atoms in Molecules. A consistent pattern emerges; the U-O bond is the most covalent, followed by Ce-O and Th-O, with those involving the heavier transition metals the least so. The covalency of the Ti-O bond differs relative to Ce-O and Th-O, with the orbital-based method showing greater relative covalency for Ti than the electron density-based methods. The deformation energy of r(M-O) correlates with the d orbital contribution from the metal to the M-O bond, while no such correlation is found for the f orbital component. f orbital involvement in M-O bonding is an important component of covalency, facilitating orbital overlap and allowing for greater expansion of the electrons, thus lowering their kinetic energy.

Chemistry ; 24(3): 672-680, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29119625


Four-membered rings with a P2 BCh core (Ch=S, Se) have been synthesized by the reaction of phosphinidene chalcogenide (Ar*P=Ch) and phosphaborene (Mes*P=BNR2 ). The mechanistic pathways towards these rings are explained by detailed computational work that confirmed the preference for the formation of P-P, not P-B, bonded systems, which seems counterintuitive given that both phosphorus atoms contain bulky ligands. The reactivity of the newly synthesized heterocycles, as well as that of the known (RPCh)n rings (n=2, 3), was probed by the addition of N-heterocyclic carbenes, which revealed that all investigated compounds can act as sources of low-coordinate phosphorus species.

Angew Chem Int Ed Engl ; 56(33): 9953-9957, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28643472


Formal exchange of C=C units with isoelectronic B=N or B=P units can provide access to molecules with unique electronic or chemical properties. Herein, we report the simple solution-phase generation of highly reactive phosphaborenes, RP=BR, and demonstrate their use for the introduction of P=B units into organic systems. Ring opening of a P-B-containing cyclobutene isostere provided access to unique 1,4-boraphosphabutadiene systems with conjugated main-group multiple bonds.

Chemistry ; 22(18): 6248-52, 2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-26918876


We report the preparation of N-heterocyclic carbene (NHC)-stabilized compounds containing P=B double bonds. The reaction of the highly functionalized phosphinoborane Mes*(SiMe3 )P-B(Cl)Cp* with Lewis bases allows access to base-stabilized phosphinidene boranes Mes*P=B(L)Cp* (L=4-dimethylaminopyridine (DMAP), NHC) by Me3 SiCl elimination. The formation of these species is shown to proceed through transient borylphosphide anions generated by Me3 Si abstraction.