Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Adhes Dent ; 23(2): 121-131, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33825426

RESUMO

PURPOSE: This study evaluated the effect of the design of the light-curing unit (LCU) and mouth opening on the properties of bulk-fill resin-based composites (RBCs). MATERIALS AND METHODS: Eighty molars received a mesio-occlusal-distal preparation and were restored using two different bulk-fill RBCs, Opus Bulk Fill APS (FGM) and Filtek Bulk Fill One (3M Oral Care), using two different designs of LCU, straight (Valo Cordless [Ultradent]) and angled (Radii-Cal [SDI]). Two mouth openings of 25 and 45 mm at the incisors were used. Forty samples were sectioned mesiodistally. One half was immersed in tetrahydrofuran to examine the effect of the solvent on the RBCs (SE), and the other half to measure the degree of conversion (DC) in proximal and occlusal boxes using Fourier Transform Infrared spectroscopy. The other 40 samples were subjected to thermomechanical fatigue and immersed in silver nitrate to examine the gingival margin integrity (GMI) using SEM. The irradiance (mW/cm2) and emission spectrum (mW/cm2/nm) from the LCUs were measured using a MARC Resin Calibrator (BlueLight Analytics). DC data were analyzed by 3-way ANOVA and Tukey's test; SE and GMI were analyzed by an ANOVA on Ranks and Dunn test (α = 0.05). RESULTS: The DC values were similar in the occlusal and proximal boxes when using Valo Cordless, irrespective of RBC and the mouth opening used. Lower DC values were measured in proximal boxes when using Radii-Cal. The mouth opening had a greater effect on the irradiance delivered by Radii-Cal. Radii-Cal with 25-mm mouth opening had greater SE and GMI values, whereas the SE and GMI values obtained with Valo Cordless were unaffected by mouth opening. CONCLUSION: The choice of LCU did not influence the properties of tested bulk-fill RBCs when the 45-mm mouth opening was used. However, when using the 25-mm mouth opening, the choice of LCU did influence the properties of the RBCs.


Assuntos
Luzes de Cura Dentária , Cura Luminosa de Adesivos Dentários , Resinas Compostas , Teste de Materiais , Dente Molar , Polimerização , Propriedades de Superfície
2.
J Dent ; 105: 103568, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33385531

RESUMO

OBJECTIVE: This study correlates the mechanical and biological response of commercially available resin-based composites (RBCs) to clinically relevant light-curing conditions. METHODS: Two RBCs (Venus and Venus Pearl; Kulzer) that use different monomer and photo-initiator systems, but have a similar filler volume and shade, were exposed to either just blue light, or violet and blue light from two different LCUs (Translux Wave and Translux 2Wave; Kulzer). Distance and exposure times were adjusted so that both LCUs delivered 5 similar levels of radiant exposures (RE) between 1.5 J/cm²-25 J/cm² in the blue wavelength range. Thus, the violet light was additional light. The top and bottom of 2-mm thick specimens were subjected to a depth-sensing indentation test (Martens hardness/HM, Vickers hardness/HV, indentation modulus/YHU, mechanical work/Wtotal, plastic deformation work/Wplas, creep/Cr). The viability of human gingival fibroblasts was assessed after three days of exposure to RBC eluates. One and multiple-way analysis of variance (ANOVA), the Tukey honestly significant difference (HSD) post-hoc tests (α = 0.05), t-test and a Spearman correlation analysis were used. RESULTS: As the RE increased, the mechanical properties increased at a greater rate at the top compared to the bottom of the RBCs. Values measured at the bottom of 2-mm increments approached the values measured at the top only when RE > 25 J/cm² of blue light was delivered. Toxicity decreased with RE and elution cycles and was lower for Venus Pearl. Within one RE level, addition of violet light resulted in significantly improved properties (in 131 out of 150 comparisons, p < 0.05). This effect was stronger for Venus Pearl. There was a good correlation between mechanical and biological parameters. This correlation decreased as the number of eluates increased. CLINICAL SIGNIFICANCE: The mechanical and biological response to variation in RE is interrelated. The addition of violet light has a positive effect, particularly at low RE.


Assuntos
Resinas Compostas , Luzes de Cura Dentária , Materiais Dentários , Dureza , Humanos , Cura Luminosa de Adesivos Dentários , Teste de Materiais , Polimerização , Propriedades de Superfície
4.
J Dent ; 103: 103503, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33091553

RESUMO

OBJECTIVES: Curing lights cannot be sterilized and should be covered with an infection control barrier. This study evaluated the effect of barriers when applied correctly and incorrectly on the radiant power (mW), irradiance (mW/cm2), emission spectrum (mW/nm), and beam profile from a multi-peak light-curing unit (LCU). METHODS: Five plastic barriers (VALO Grand, Ultradent; TIDIShield, TIDI Products; Disposa-Shield, Dentsply Sirona; Cure Sleeve, Kerr; Stretch and Seal, Betty Crocker) and one latex-based barrier (Curelastic, Steri-Shield) were tested. The radiant power (mW) and emission spectrum (mW/nm) from one multi-peak LCU (VALO Grand, Ultradent) was measured using an integrating sphere. LCU tip internal diameter (mm) was measured, then the tip area and irradiance (mW/cm2) were calculated. The beam profiles were measured using a laser beam profiler. RESULTS: When applied correctly, the plastic barriers reduced the radiant power output by 5-8%, and the latex-based barrier by 16%. When the plastic seam or barrier opaque face was positioned over the LCU tip, the power output was reduced by 8-11%. When the plastic barriers were wrinkled, the power output was significantly reduced by 14-26%. The wrinkled latex-based barrier reduced by 28%, and further reduced the violet light. The beam profiles illustrated the importance of correctly barrier use without wrinkles over the tip. CONCLUSIONS: Plastic barriers applied correctly reduced the light output (mW) by 5-8%. The barriers applied incorrectly significantly reduced the light output by 14-26%. The latex-based barrier wrinkled also reduced the amount of violet light. CLINICAL RELEVANCE: Infection control curing light barriers should be used to prevent cross-infection between patients. However, they must be applied correctly to reduce their negative effects on the light output.

5.
Dent Mater ; 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32950244

RESUMO

OBJECTIVE: To evaluate the effect of exposure time and moving the light-curing unit (LCU) on the degree of conversion (DC) and Knoop microhardness (KH) of two resin cements that were light-cured through ceramic. METHODS: Two resin cements: AllCem Veneer APS (FGM) and Variolink Esthetic LC (Ivoclar Vivadent) were placed into a 0.3 mm thick matrix in 6 locations representing the canine to canine. The resins were covered with 0.5 mm thick lithium disilicate glass-ceramic (IPS e.max CAD, Ivoclar Vivadent). A motorized device moved the LCUs over the ceramic when the LCU was on. Two single-peak LCUs: Elipar DeepCure-L (3M Oral Care) and Emitter C (Schuster), and one multi-peak: Bluephase G2 (Ivoclar Vivadent) were used with 3 different exposure protocols: a localized exposure centered over each tooth for 10 or 40 s; moving the tip across the 6 teeth for a total exposure time of 10 or 40 s; and moving the tip across the 6 teeth resins for a total exposure time of 60 or 240 s. After 24 h, the DC and KH were measured on the top surfaces and the data was analyzed using three-way ANOVA and Tukey's tests (α = 0.05). RESULTS: Interposition of 0.5 mm of ceramic reduced the irradiance received by the resin by approximately 50%. The 40 s localized exposure over each tooth always produced significantly higher DC and KH values. Moving the LCUs with a total exposure time of 10 s resulted in the lowest DC and KH. There was no beneficial effect on the DC or KH when the multi-peak (violet-blue) LCU (Elipar DeepCure-L or Bluephase G2), but the lower light output from a small tip LCU reduced the DC and KH values (Emitter C). SIGNIFICANCE: Moving the LCUs when photo-curing light-cured resin cements is not recommended. This study showed that a single-peak LCU could activate a resin cement that uses Ivocerin™ as well as the multi-peak LCU.

6.
Dent Mater ; 36(8): 1019-1027, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32600662

RESUMO

OBJECTIVES: To evaluate the effect of time on the Vickers microhardness (VH) at the top and bottom surfaces of six conventional resin-based composites (RBCs) up to twelve weeks after light curing. METHODS: Five specimens of Filtek Supreme Ultra, Herculite Ultra, Mosaic Ultra, Tetric EvoCeram, TPH Spectra HV, and Venus Pearl were packed into opaque molds that were 2.3mm in diameter and 2.5mm deep. The uncured RBC specimens were covered by a polyester strip and photo-cured with an Elipar DeepCure-S light-curing unit (LCU) according to the manufacturer's instructions. After irradiation, the polyester strip was removed, and the Vickers microhardness was measured immediately at top and bottom surfaces. The hardness measurements were repeated after 30min, 1h, 2h, 4h, 24h, 1 week, 4 weeks, and 12 weeks. In between, the specimens were stored in dry and dark conditions at 37°C. Two-way ANOVA (α=0.05) followed by Tukey-Kramer post hoc multiple comparison tests were used to determine where statistically significant differences existed. RESULTS: The micro-hardness values at the top surface always exceeded those at the bottom surface. A significant logarithmic increase of the micro-hardness due to post-irradiation curing took place between 30min and 24h (p<0.05). There was no significant increase in the VH after 24h. Depending on the RBC, compared to the immediate values the hardness 24h post-irradiation had increased by 11-27% at the top surface and by 21-58% at the bottom. SIGNIFICANCE: Even after 12 weeks, the bottom hardness values never reached the top microhardness values. The results of studies that wait 24h or longer before measuring the properties of RBC specimens will be significantly enhanced by the impact of post-irradiation curing. Especially within the first 4h, the time when specimens are measured is critical information and should be reported.

7.
J Esthet Restor Dent ; 32(5): 521-529, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32598095

RESUMO

OBJECTIVE: To evaluate the effects of human saliva decontamination protocols on bond strength of resin cement to zirconia (Y-PSZ), wettability, and microbial decontamination. MATERIALS AND METHODS: Zirconia plates were sandblasted and divided into (a) not contaminated, (b) contaminated with human saliva and: (c) not cleaned, (d) cleaned with air-water spray, (e) cleaned with 70% ethanol, (f) cleaned with Ivoclean, or (g) cleaned with nonthermal atmospheric plasma (NTAP). The wettability and microbial decontamination of the surfaces were determined after saliva contamination or cleaning. Monobond Plus (Ivoclar Vivadent) was applied after cleaning, followed by Variolink LC (Ivoclar Vivadent). The samples were stored 1 week before shear bond strength (SBS) testing, and data (SBS and wettability) were analyzed by one-way analysis of variance and Tukey test (α = .05). RESULTS: Saliva contamination reduced SBS to zirconia compared to not contaminated. Both Ivoclean and NTAP produced higher SBS compared to not cleaned and were not significantly different from the not contaminated. Ivoclean produced the highest contact angle, and NTAP the lowest. With the exception of using just water-spray, all cleaning protocols decontaminated the specimens. CONCLUSIONS: Both Ivoclean and NTAP overcame the effects of saliva contamination, producing an SBS to zirconia comparable to the positive control. CLINICAL SIGNIFICANCE: Dental ceramics should be cleaned prior to resin cementation to eliminate the effects of human saliva contamination, and Ivoclean and NTAP are considered suitable materials for this purpose.


Assuntos
Colagem Dentária , Cerâmica , Descontaminação , Análise do Estresse Dentário , Humanos , Teste de Materiais , Cimentos de Resina , Propriedades de Superfície , Molhabilidade , Zircônio
8.
Dent Mater ; 35(8): 1173-1193, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31174864

RESUMO

OBJECTIVE: This study investigated the influence of the degree of conversion (DC), resin-based composites (RBC) composition, and the effect of additional violet light from one light curing unit (LCU) on cell attachment/growth, eluate cytotoxicity, and gene expression. METHODS: The effect of different DC of RBCs on human gingival fibroblasts (HGFs) when cultured directly onto cured RBCs, and when exposed afterwards to eluates in cell culture medium was examined. Venus® (RBC-V; Bis-GMA-based) and Venus Pearl® (RBC-P; TCD-DI-HEA and UDMA-based) were cured using a single emission peak (blue) light, Translux Wave®; TW and a dual emission peak (blue-violet) light, Translux 2 Wave®; T2W. To determine the value of the additional violet light from the T2W, exposure times and distances were adjusted to deliver similar radiant exposures (RE) from the blue region of both lights at five different RE levels from 1.5 J/cm² to 28.9 J/cm². RESULTS: Both RBCs light-cured with the T2W at higher REs resulted in higher DC, increased cell adhesion and decreased eluate cytotoxicity. RBC-V induced greater cell adhesion, lower mRNA levels of pro-inflammatory markers, and higher mRNA levels of a proliferation marker than RBC-P. Wettability was the same for both RBCs. Toxicity decreased with increasing number of elution cycles. The initial eluates from RBC-P had a lower toxicity than from RBC-V. SIGNIFICANCE: RBCs cured with T2W (delivering both blue and violet light) at higher RE had greater DCs. The greatest DC and the least cell reactions were observed when the RE was >25 J/cm².


Assuntos
Resinas Compostas , Luzes de Cura Dentária , Bis-Fenol A-Glicidil Metacrilato , Materiais Dentários , Humanos , Cura Luminosa de Adesivos Dentários , Teste de Materiais , Polimerização
9.
Dent Mater ; 35(3): 414-421, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606618

RESUMO

OBJECTIVE: To evaluate how the light delivered to resin-composites was described in recent articles. METHOD: PubMed was searched for 300 articles published between January 2017 and May 2018 with keywords relating to photocuring of dental materials. The articles examined a wide range of resin-composite properties and performance. For each article, the information provided about the light curing unit (LCU), the light curing conditions and the characteristics and quantity of the light used in the study were recorded. Specifically, the type of LCU used; the irradiance; how the irradiance was measured; the exposure times; whether the light energy (radiant exposure) received by the specimen was determined, or if only the light output at the LCU tip was measured; whether the distance between the tip of the LCU and the specimen was reported; and whether the emission spectrum from the LCU was reported. Where possible, the resin manufacturer's minimum energy requirement (MER: the product of the recommended minimum exposure time and irradiance) was compared to the radiant exposure delivered to the specimen. RESULTS: Of the 300 articles examined, 217 were published in 2017 and 83 in 2018. Of these articles, 130 (43%) were found in open access journals, and 170 (57%) were in subscription-based journals. The name of the LCU used was not provided in 31 articles, 14 articles did not provide the exposure time, and 227 articles did not report the distance to the specimen. An irradiance value was reported in 231 articles, but this was the irradiance received by the specimen in only 48 instances. The emission spectrum from the LCU was reported in 15 articles. There was a large range in the radiant exposures from below 10J/cm2 to greater than 100J/cm2. SIGNIFICANCE: The majority of articles from 2017 and early 2018 did not include sufficient description of the characteristics and quantity of the light received by the resin-composite specimens to allow the study to be replicated. It is recommended that future articles should report: (1) the identity of the LCU used; (2) the radiant exposure received by the specimen (J/cm2); and (3) appropriate reference to the emission spectrum from the LCU.


Assuntos
Resinas Compostas , Luzes de Cura Dentária , Materiais Dentários , Teste de Materiais
10.
Braz Oral Res ; 32: e122, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30569972

RESUMO

The effects of tooth brushing could affect the long-term esthetic outcome of composite restorations. This study evaluated the effect of two different emission spectrum light-curing units on the surface roughness, roughness profile, topography and microhardness of bulk-fill composites after in vitro toothbrushing. Valo (multiple-peak) and Demi Ultra (single-peak) curing lights were each used for 10s to polymerize three bulk-fill resin composites: Filtek Bulk Fill Posterior Restorative (FBF), Tetric EvoCeram Bulk Fill (TET) and Surefil SDR Flow (SDR). After 30,000 reciprocal strokes in a toothbrushing machine, the roughness profile, surface roughness, surface morphology, and microhardness were examined. Representative SEM images were also obtained. When light-cured with the Demi Ultra, SDR showed the most loss in volume compared to the other composites and higher volume loss compared to when was light-cured with Valo. The highest surface roughness and roughness profile values were found in SDR after toothbrushing, for both light-curing units tested. FBF always had the greatest microhardness values. Light-curing TET with Valo resulted in higher microhardness compared to when using the Demi Ultra. Confocal and SEM images show that toothbrushing resulted in smoother surfaces for FBF and TET. All composites exhibited surface volume loss after toothbrushing. The loss in volume of SDR depended on the light-curing unit used. Toothbrushing can alter the surface roughness and superficial aspect of some bulk-fill composites. The choice of light-curing unit did not affect the roughness profile, but, depending on the composite, it affected the microhardness.


Assuntos
Resinas Compostas/efeitos da radiação , Luzes de Cura Dentária , Escovação Dentária/efeitos adversos , Análise de Variância , Resinas Compostas/química , Dureza/efeitos dos fármacos , Dureza/efeitos da radiação , Cura Luminosa de Adesivos Dentários/métodos , Teste de Materiais , Microscopia Confocal , Microscopia Eletrônica de Varredura , Polimerização , Reprodutibilidade dos Testes , Propriedades de Superfície/efeitos dos fármacos , Propriedades de Superfície/efeitos da radiação , Fatores de Tempo
11.
Braz Dent J ; 29(3): 282-289, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29972455

RESUMO

The combination of the restoration location, the hand preference of the operator using the light-curing unit (LCU), and the design of the LCU all can have an impact on the amount of the light delivered to the restoration. To evaluate the effect of left-handed or right-handed users, the position of the operator (dentist or assistant), and the LCU design on the irradiance, radiant exposure and emission spectrum delivered to the same posterior tooth. Two light emitting diode (LED) LCUs were tested: an angulated monowave LCU Radii-Cal (SDI, Victoria, Australia) and a straight aligned multi-peak LCU Valo Cordless (Ultradent, South Jordan, UT, USA). The irradiance values (mW/cm2), radiant exposure (J/cm2) and emission spectrum were measured using a sensor in maxillary left second molar tooth. The irradiance and radiant exposure were analyzed using three-way ANOVA followed by Tukey test (a=0.05). The emission spectra (nm) were analyzed descriptively. The interaction between LCU design, operator position, and hand preference significantly influenced the irradiance and radiant exposure (P<0.001). In all cases, Valo delivered significantly higher irradiance than Radii-Cal. The handedness and the operator position affected the irradiance and radiant exposure delivered from Valo. Operator position and access affect the irradiance and radiant exposure delivered to the maxillary left second molar. The irradiance and radiant exposure can be greater when a right-hand operator is positioned on the right side of the chair and a left-hand operator is positioned on the left side of the chair. This may result in better resin composite polymerization.


Assuntos
Luzes de Cura Dentária , Assistentes de Odontologia , Lateralidade Funcional , Luz , Exposição à Radiação , Desenho de Equipamento , Humanos
12.
Dent Mater ; 34(8): 1211-1221, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29801683

RESUMO

OBJECTIVE: To determine the potential effect of four different light curing units (LCUs) on the curing profile of two bulk fill resin-based composites (RBCs). METHODS: Four LCUs (Bluephase 20i, Celalux 3, Elipar DeepCure-S and Valo Grand) were used to light cure two RBCs (Filtek Bulk Fill Posterior Restorative and Tetric EvoCeram Bulk Fill). The effective tip diameter, radiant power, radiant emittance, emission spectrum and light beam profile of the LCUs were measured. Knoop microhardness was measured at the top and bottom surfaces of RBC specimens that were 12-mm in diameter and 4-mm deep (n=5). The distribution of the spectral radiant power that was delivered to the surface of the specimen and the light transmission through the 4-mm thick specimens was measured using an integrating sphere. Two-way ANOVA and Tukey tests (α=0.05) were applied. RESULTS: The Valo Grand produced the most homogeneous microhardness across the surfaces of the RBCs (p>0.05). When the Celalux 3, Bluephase 20i and Elipar DeepCure-S lights were used, the center of the specimens achieved greater hardness values compared to their outer regions (p<0.05). Approximately 10% of the radiant power delivered to the top reached the bottom of the specimen, although almost no violet light passed through 4mm of either RBC. A positive correlation was observed between the radiant exposure and microhardness. SIGNIFICANCE: The characteristics of the LCUs influenced the photoactivation of the RBCs. The use of a wide tip with a homogeneous light distribution is preferred when light curing RBCs using a bulk curing technique.


Assuntos
Resinas Compostas/química , Luzes de Cura Dentária , Cura Luminosa de Adesivos Dentários/métodos , Testes de Dureza , Teste de Materiais , Polimerização , Propriedades de Superfície
13.
Braz. dent. j ; 29(3): 282-289, May-June 2018. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-951554

RESUMO

Abstract The combination of the restoration location, the hand preference of the operator using the light-curing unit (LCU), and the design of the LCU all can have an impact on the amount of the light delivered to the restoration. To evaluate the effect of left-handed or right-handed users, the position of the operator (dentist or assistant), and the LCU design on the irradiance, radiant exposure and emission spectrum delivered to the same posterior tooth. Two light emitting diode (LED) LCUs were tested: an angulated monowave LCU Radii-Cal (SDI, Victoria, Australia) and a straight aligned multi-peak LCU Valo Cordless (Ultradent, South Jordan, UT, USA). The irradiance values (mW/cm2), radiant exposure (J/cm2) and emission spectrum were measured using a sensor in maxillary left second molar tooth. The irradiance and radiant exposure were analyzed using three-way ANOVA followed by Tukey test (a=0.05). The emission spectra (nm) were analyzed descriptively. The interaction between LCU design, operator position, and hand preference significantly influenced the irradiance and radiant exposure (P<0.001). In all cases, Valo delivered significantly higher irradiance than Radii-Cal. The handedness and the operator position affected the irradiance and radiant exposure delivered from Valo. Operator position and access affect the irradiance and radiant exposure delivered to the maxillary left second molar. The irradiance and radiant exposure can be greater when a right-hand operator is positioned on the right side of the chair and a left-hand operator is positioned on the left side of the chair. This may result in better resin composite polymerization.


Resumo A combinação da localização da restauração, a preferência de mão do operador ao utilizar aparelhos fotopolimerizadores (AFP) com luz emitida por diodo (LED) e o formato do AFP podem afetar a quantidade de luz fornecida à restauração. O objetivo foi avaliar o efeito de operadores canhotos e destros, a posição do operador (dentista ou auxiliar), e o formato do AFP na irradiância, energia radiante e espectro de luz entregue ao mesmo dente posterior. Dois AFP foram testados: um com formato angulado, onda única Radii-Cal (SDI, Victoria, Australia) e um formato reto multi-pico Valo Cordless (Ultradent, South Jordan, UT, USA). Os valores de irradiância (mW/cm²), energia radiante (J/cm²) e espectro de luz foram medidos utilizando um sensor no segundo molar superior esquerdo. A irradiância e energia radiante foram analisados utilizando ANOVA 3 fatores seguido por teste de Tukey (a=0.05). O espectro de luz (nm) foi analisado de forma descritiva. A interação entre o formato do AFP, posição do operador e preferência de mão foram significativamente influentes na irradiância e energia radiante (P<0.001). Em todos os casos, Valo teve irradiância significativamente maior que Radii-Cal. A mão dominante e a posição do operador afetaram a irradiância e energia radiante com o Valo. Posição do operador e acesso afetou a irradiância e exposição radiante entregue ao segundo molar superior esquerdo. A irradiância e exposição radiante teve melhores resultados quando AFP foi utilizado com a mão direita pelo operador posicionado na cadeira do lado direito e mão esquerda do operador posicionado do lado esquerdo da cadeira. Estes resultados podem levar a uma melhor polimerização da resina composta.

14.
J Dent ; 74: 71-78, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29689293

RESUMO

OBJECTIVES: To describe a method of measuring the molar cusp deformation using micro-computed tomography (micro-CT), the propagation of enamel cracks using transillumination, and the effects of hygroscopic expansion after incremental and bulk-filling resin composite restorations. METHODS: Twenty human molars received standardized Class II mesio-occlusal-distal cavity preparations. They were restored with either a bulk-fill resin composite, X-tra fil (XTRA), or a conventional resin composite, Filtek Z100 (Z100). The resin composites were tested for post-gel shrinkage using a strain gauge method. Cusp deformation (CD) was evaluated using the images obtained using a micro-CT protocol and using a strain-gauge method. Enamel cracks were detected using transillumination. RESULTS: The post-gel shrinkage of Z100 was higher than XTRA (P < 0.001). The amount of cusp deformation produced using Z100 was higher compared to XTRA, irrespective of the measurement method used (P < 0.001). The thinner lingual cusp always had a higher CD than the buccal cusp, irrespective of the measurement method (P < 0.001). A positive correlation (r = 0.78) was found between cusp deformation measured by micro-CT or by the strain-gauge method. After hygroscopic expansion of the resin composite, the cusp displacement recovered around 85% (P < 0.001). After restoration, Z100 produced more cracks than XTRA (P = 0.012). CONCLUSIONS: Micro-CT was an effective method for evaluating the cusp deformation. Transillumination was effective for detecting enamel cracks. There were fewer negative effects of polymerization shrinkage in bulk-fill resin restorations using XTRA than for the conventional incremental filling technique using conventional composite resin Z100. CLINICAL SIGNIFICANCE: Shrinkage and cusp deformation are directly related to the formation of enamel cracks. Cusp deformation and crack propagation may increase the risk of tooth fracture.


Assuntos
Resinas Compostas/química , Esmalte Dentário/lesões , Esmalte Dentário/patologia , Restauração Dentária Permanente/métodos , Dente Molar/diagnóstico por imagem , Dente Molar/patologia , Microtomografia por Raio-X/métodos , Preparo da Cavidade Dentária/métodos , Esmalte Dentário/diagnóstico por imagem , Materiais Dentários/química , Análise do Estresse Dentário , Humanos , Teste de Materiais , Metacrilatos/química , Polimerização , Dióxido de Silício/química , Estresse Mecânico , Zircônio/química
15.
J Esthet Restor Dent ; 30(1): 59-69, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29205770

RESUMO

OBJECTIVES: To determine the effects of tooth brushing on five bulk-fill resin based composites (RBCs). METHOD: Ten samples of Filtek Supreme Enamel (control), Filtek One Bulk Fill, Tetric EvoCeram Bulk Fill, SonicFill 2, SDR flow+, and Admira Fusion X-tra were light cured for 20 seconds using the Valo Grand curing light. After 24 hours storage in air at 37°C, specimens were brushed in a random order using Colgate OpticWhite dentifrice and a soft toothbrush. Surface gloss was measured prior to brushing, after 5,000, 10,000 and 15,000 back and forth brushing cycles. Surface roughness was measured after 15,000 brushing cycles using atomic force microscopy (AFM) and selected scanning electron microscope (SEM) images were taken. The data was examined using ANOVA and pair-wise comparisons using Scheffe's post-hoc multiple comparison tests (α = 0.05). RESULTS: Surface gloss decreased and the surface roughness increased after brushing. Two-way ANOVA showed that both the RBC and the number of brushing cycles had a significant negative effect on the gloss. One-way ANOVA showed that the RBC had a significant effect on the roughness after 15,000 brushing cycles. For both gloss and roughness, brushing had the least effect on the nano-filled control and nano-filled bulk-fill RBC, and the greatest negative effect on Admira Fusion X-tra. The SEM images provided visual agreement. There was an excellent linear correlation (R2 = 0.98) between the logarithm of the gloss and roughness. CONCLUSION: After brushing, the bulk-fill RBCs were all rougher than the control nano-filled RBC. The nano-filled bulk-fill RBC was the least affected by brushing. CLINICAL SIGNIFICANCE: Bulk-fill RBCs lose their gloss faster and become rougher than the nanofilled conventional RBC, Filtek Supreme Ultra. The nanofilled bulk-fill RBC was the least affected by tooth brushing.


Assuntos
Resinas Compostas , Materiais Dentários , Teste de Materiais , Propriedades de Superfície , Escovação Dentária
16.
Braz. oral res. (Online) ; 32: e122, 2018. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-974460

RESUMO

Abstract: The effects of tooth brushing could affect the long-term esthetic outcome of composite restorations. This study evaluated the effect of two different emission spectrum light-curing units on the surface roughness, roughness profile, topography and microhardness of bulk-fill composites after in vitro toothbrushing. Valo (multiple-peak) and Demi Ultra (single-peak) curing lights were each used for 10s to polymerize three bulk-fill resin composites: Filtek Bulk Fill Posterior Restorative (FBF), Tetric EvoCeram Bulk Fill (TET) and Surefil SDR Flow (SDR). After 30,000 reciprocal strokes in a toothbrushing machine, the roughness profile, surface roughness, surface morphology, and microhardness were examined. Representative SEM images were also obtained. When light-cured with the Demi Ultra, SDR showed the most loss in volume compared to the other composites and higher volume loss compared to when was light-cured with Valo. The highest surface roughness and roughness profile values were found in SDR after toothbrushing, for both light-curing units tested. FBF always had the greatest microhardness values. Light-curing TET with Valo resulted in higher microhardness compared to when using the Demi Ultra. Confocal and SEM images show that toothbrushing resulted in smoother surfaces for FBF and TET. All composites exhibited surface volume loss after toothbrushing. The loss in volume of SDR depended on the light-curing unit used. Toothbrushing can alter the surface roughness and superficial aspect of some bulk-fill composites. The choice of light-curing unit did not affect the roughness profile, but, depending on the composite, it affected the microhardness.

17.
Braz Oral Res ; 31(suppl 1): e61, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28902241

RESUMO

Contemporary dentistry literally cannot be performed without use of resin-based restorative materials. With the success of bonding resin materials to tooth structures, an even wider scope of clinical applications has arisen for these lines of products. Understanding of the basic events occurring in any dental polymerization mechanism, regardless of the mode of activating the process, will allow clinicians to both better appreciate the tremendous improvements that have been made over the years, and will also provide valuable information on differences among strategies manufacturers use to optimize product performance, as well as factors under the control of the clinician, whereby they can influence the long-term outcome of their restorative procedures.


Assuntos
Luzes de Cura Dentária , Cimentos Dentários/química , Cura Luminosa de Adesivos Dentários/instrumentação , Cura Luminosa de Adesivos Dentários/métodos , Fotoiniciadores Dentários/química , Polimerização , Absorção de Radiação , Cimentos Dentários/efeitos da radiação , Restauração Dentária Permanente/instrumentação , Restauração Dentária Permanente/métodos , Polimerização/efeitos da radiação , Doses de Radiação , Temperatura , Fatores de Tempo
18.
Braz. oral res. (Online) ; 31(supl.1): e61, Aug. 2017. graf
Artigo em Inglês | LILACS | ID: biblio-889452

RESUMO

Abstract Contemporary dentistry literally cannot be performed without use of resin-based restorative materials. With the success of bonding resin materials to tooth structures, an even wider scope of clinical applications has arisen for these lines of products. Understanding of the basic events occurring in any dental polymerization mechanism, regardless of the mode of activating the process, will allow clinicians to both better appreciate the tremendous improvements that have been made over the years, and will also provide valuable information on differences among strategies manufacturers use to optimize product performance, as well as factors under the control of the clinician, whereby they can influence the long-term outcome of their restorative procedures.


Assuntos
Luzes de Cura Dentária , Cimentos Dentários/química , Cura Luminosa de Adesivos Dentários/instrumentação , Cura Luminosa de Adesivos Dentários/métodos , Fotoiniciadores Dentários/química , Polimerização , Absorção de Radiação , Cimentos Dentários/efeitos da radiação , Restauração Dentária Permanente/instrumentação , Restauração Dentária Permanente/métodos , Polimerização/efeitos da radiação , Doses de Radiação , Temperatura , Fatores de Tempo
19.
Braz. dent. j ; 28(3): 362-371, May-June 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-888649

RESUMO

Abstract This study measured the radiant power (mW), irradiance (mW/cm2) and emission spectra (mW/cm2/nm) of 22 new, or almost new, light curing units (LCUs): - Alt Lux II, BioLux Standard, Bluephase G2, Curing Light XL 3000, Demetron LC, DX Turbo LED 1200, EC450, EC500, Emitter C, Emitter D, KON-LUX, LED 3M ESPE, Led Lux II, Optilight Color, Optilight Max, Optilux 501, Poly Wireless, Radii cal, Radii plus, TL-01, VALO Cordless. These LCUs were either monowave or multiple peak light emitting diode (LED) units or quartz-tungsten-halogen LCUs used in anterior and posterior teeth. The radiant power emitted by the LCUs was measured by a laboratory grade laser power meter. The tip area (cm²) of the LCUs was measured and used to calculate the irradiance from the measured radiant power source. The MARC-Patient Simulator (MARC-PS) with a laboratory grade spectrometer (USB4000, Ocean Optics) was used to measure the irradiance and emission spectrum from each LCU three times at the sensor located on the facial of the maxillary central incisors and then separately at the occlusal of a maxillary second molar. The minimum acceptable irradiance level was set as 500 mW/cm2. Irradiance data was analyzed using two-way ANOVA and the radiant power data was analyzed by one-way ANOVA followed by Tukey test (a=0.05). In general, the irradiance was reduced at the molar tooth for most LCUs. Only the Valo, Bluephase G2 and Radii Plus delivered an irradiance similar to the anterior and posterior sensors greater than 500 mW/cm2. KON-LUX, Altlux II, Biolux Standard, TL-01, Optilux 501, DX Turbo LED 1200 LCUs delivered lower irradiance values than the recommended one used in molar region, KON-LUX and Altlux II LCUs used at the maxillary incisors. Bluephase G2 and Optilight Max delivered the highest radiant power and KON-LUX, Altlux II and Biolux Standard delivered the lowest power. The emission spectrum from the various monowave LED LCUs varied greatly. The multi-peak LCUs delivered similar emission spectra to both sensors.


Resumo Este estudo mediu a potência (mW), irradiância (mW/cm2) e espectro da luz (mW/cm2/nm) emitida por 22 fontes de luz (Alt Lux II, BioLux Standard, Bluephase G2, Curing Light XL 3000, Demetron LC, DX Turbo LED 1200, EC450, EC500, Emitter C, Emitter D, KON-LUX, LED 3M ESPE, Led Lux II, Optilight Color, Optilight Max, Optilux 501, Poly Wireless, Radii cal, Radii plus, TL-01, VALO Cordless) disponíveis comercialmente. A potência emitida pelas fontes de luz foi medida usando um medidor laboratorial de potencia com grade a laser. A área (cm²) da ponta ativa efetiva das fontes de luz foi medida com paquímetro digital e utilizada para calcular a irradiância emitida. O simulador de paciente-MARC (MARC - PS) com espectrómetro (USB4000, Ocean Optics) foi usado para medir a irradiância e o espectro de luz emitida por cada fonte de luz na região anterior e posterior. Esta medição foi repetida por três vezes em dois sensores localizados na região anterior e posterior da arcada dentária. Os dados de irradiância foram analisados utilizando análise de variância em dois fatores, e os dados de potência foram analisados com análise de variância em fator único seguido pelo teste de Tukey (a=0,05). As fontes de luz Valo, Bluephase G2, Radii Plus emitiram irradiância semelhante tanto na região anterior como posterior com valores superiores ao mínimo de 500 mW/cm2. Seis fontes de luz emitiram irradiância menor que o recomendado (500 mW/cm2) quando usadas na região posterior: Kon-lux, Altlux II, Biolux Standard TL-01, Optilux 501, DX Turbo LED 1200 e duas quando usadas na região anterior: Kon-lux e Altlux II LCUs. As fontes Bluephase G2, Optilight Max emitiram os maiores valores de potência e as fontes de luz Altlux II e Biolux Standard emitiram os menores valores de potência. O espectro de luz das fontes LED de espectro único variou de forma evidente entre as fontes. As fontes LED multi pico de espectro emitiram espectros de luz similar para ambos os sensores. A fotoativação na região posterior tende a reduzir substancialmente a irradiância da maioria das fontes de luzes testadas.


Assuntos
Humanos , Luzes de Cura Dentária , Restauração Dentária Permanente , Lasers , Simulação de Paciente , Análise Espectral/instrumentação , Dente/efeitos da radiação
20.
Braz Dent J ; 28(1): 9-15, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28301012

RESUMO

The high irradiance and the different emission spectra from contemporary light curing units (LCU) may cause ocular damage. This study evaluated the ability of 15 eye protection filters: 2 glasses, 1 paddle design, and 12 dedicated filters to block out harmful light from a monowave (HP-3M ESPE) and a broad-spectrum (Valo, Ultradent) LED LCU. Using the anterior sensor in the MARC-Patient Simulator (BlueLight Analytics) the irradiance that was delivered through different eye protection filters was measured three times. The LCUs delivered a similar irradiance to the top of the filter. The mean values of the light that passed through the filters as percent of the original irradiance were analyzed using two-way ANOVA followed by Tukey test (a= 0.05). The emission spectra from the LCUs and through the filters were also obtained. Two-way ANOVA showed that the interaction between protective filters and LCUs significantly influenced the amount of light transmitted (p< 0.001). Tukey test showed that the amount of light transmitted through the protective filters when using the HP-3M-ESPE was significantly greater compared to when using the Valo, irrespective of the protective filter tested. When using the HP-3M-ESPE, the Glasses filter allowed significantly more light through, followed by XL 3000, ORTUS, Google Professional, Gnatus filters. The Valo filter was the most effective at blocking out the harmful light. Some protective filters were less effective at blocking the lower wavelengths of light (<420 nm). However, even in the worst scenario, the filters were able to block at least 97% of the irradiance.


Assuntos
Luzes de Cura Dentária/efeitos adversos , Dispositivos de Proteção dos Olhos/normas , Análise de Variância , Humanos , Óptica e Fotônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...