Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
Genet Med ; 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31761904

RESUMO

PURPOSE: Pathogenic variants in neuroblastoma-amplified sequence (NBAS) cause an autosomal recessive disorder with a wide range of symptoms affecting liver, skeletal system, and brain, among others. There is a continuously growing number of patients but a lack of systematic and quantitative analysis. METHODS: Individuals with biallelic variants in NBAS were recruited within an international, multicenter study, including novel and previously published patients. Clinical variables were analyzed with log-linear models and visualized by mosaic plots; facial profiles were investigated via DeepGestalt. The structure of the NBAS protein was predicted using computational methods. RESULTS: One hundred ten individuals from 97 families with biallelic pathogenic NBAS variants were identified, including 26 novel patients with 19 previously unreported variants, giving a total number of 86 variants. Protein modeling redefined the ß-propeller domain of NBAS. Based on the localization of missense variants and in-frame deletions, three clinical subgroups arise that differ significantly regarding main clinical features and are directly related to the affected region of the NBAS protein: ß-propeller (combined phenotype), Sec39 (infantile liver failure syndrome type 2/ILFS2), and C-terminal (short stature, optic atrophy, and Pelger-Huët anomaly/SOPH). CONCLUSION: We define clinical subgroups of NBAS-associated disease that can guide patient management and point to domain-specific functions of NBAS.

3.
Orphanet J Rare Dis ; 14(1): 236, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31665043

RESUMO

BACKGROUND: Complex I (CI or NADH:ubiquinone oxidoreductase) deficiency is the most frequent cause of mitochondrial respiratory chain defect. Successful attempts to rescue CI function by introducing an exogenous NADH dehydrogenase, such as the NDI1 from Saccharomyces cerevisiae (ScNDI1), have been reported although with drawbacks related to competition with CI. In contrast to ScNDI1, which is permanently active in yeast naturally devoid of CI, plant alternative NADH dehydrogenases (NDH-2) support the oxidation of NADH only when the CI is metabolically inactive and conceivably when the concentration of matrix NADH exceeds a certain threshold. We therefore explored the feasibility of CI rescue by NDH-2 from Arabidopsis thaliana (At) in human CI defective fibroblasts. RESULTS: We showed that, other than ScNDI1, two different NDH-2 (AtNDA2 and AtNDB4) targeted to the mitochondria were able to rescue CI deficiency and decrease oxidative stress as indicated by a normalization of SOD activity in human CI-defective fibroblasts. We further demonstrated that when expressed in human control fibroblasts, AtNDA2 shows an affinity for NADH oxidation similar to that of CI, thus competing with CI for the oxidation of NADH as opposed to our initial hypothesis. This competition reduced the amount of ATP produced per oxygen atom reduced to water by half in control cells. CONCLUSIONS: In conclusion, despite their promising potential to rescue CI defects, due to a possible competition with remaining CI activity, plant NDH-2 should be regarded with caution as potential therapeutic tools for human mitochondrial diseases.

4.
J Clin Invest ; 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31550240

RESUMO

Inherited optic neuropathies include complex phenotypes, mostly driven by mitochondrial dysfunction. We report an optic atrophy spectrum disorder, including retinal macular dystrophy and kidney insufficiency leading to transplantation, associated with mitochondrial DNA (mtDNA) depletion without accumulation of multiple deletions. By whole-exome sequencing, we identified mutations affecting the mitochondrial single-strand binding protein (SSBP1) in 4 families with dominant and 1 with recessive inheritance. We show that SSBP1 mutations in patient-derived fibroblasts variably affect the amount of SSBP1 protein and alter multimer formation, but not the binding to ssDNA. SSBP1 mutations impaired mtDNA, nucleoids, and 7S-DNA amounts as well as mtDNA replication, affecting replisome machinery. The variable mtDNA depletion in cells was reflected in severity of mitochondrial dysfunction, including respiratory efficiency, OXPHOS subunits, and complex amount and assembly. mtDNA depletion and cytochrome c oxidase-negative cells were found ex vivo in biopsies of affected tissues, such as kidney and skeletal muscle. Reduced efficiency of mtDNA replication was also reproduced in vitro, confirming the pathogenic mechanism. Furthermore, ssbp1 suppression in zebrafish induced signs of nephropathy and reduced optic nerve size, the latter phenotype complemented by WT mRNA but not by SSBP1 mutant transcripts. This previously unrecognized disease of mtDNA maintenance implicates SSBP1 mutations as a cause of human pathology.

5.
Am J Hum Genet ; 105(1): 108-121, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31204009

RESUMO

Pediatric acute liver failure (ALF) is life threatening with genetic, immunologic, and environmental etiologies. Approximately half of all cases remain unexplained. Recurrent ALF (RALF) in infants describes repeated episodes of severe liver injury with recovery of hepatic function between crises. We describe bi-allelic RINT1 alterations as the cause of a multisystem disorder including RALF and skeletal abnormalities. Three unrelated individuals with RALF onset ≤3 years of age have splice alterations at the same position (c.1333+1G>A or G>T) in trans with a missense (p.Ala368Thr or p.Leu370Pro) or in-frame deletion (p.Val618_Lys619del) in RINT1. ALF episodes are concomitant with fever/infection and not all individuals have complete normalization of liver function testing between episodes. Liver biopsies revealed nonspecific liver damage including fibrosis, steatosis, or mild increases in Kupffer cells. Skeletal imaging revealed abnormalities affecting the vertebrae and pelvis. Dermal fibroblasts showed splice-variant mediated skipping of exon 9 leading to an out-of-frame product and nonsense-mediated transcript decay. Fibroblasts also revealed decreased RINT1 protein, abnormal Golgi morphology, and impaired autophagic flux compared to control. RINT1 interacts with NBAS, recently implicated in RALF, and UVRAG, to facilitate Golgi-to-ER retrograde vesicle transport. During nutrient depletion or infection, Golgi-to-ER transport is suppressed and autophagy is promoted through UVRAG regulation by mTOR. Aberrant autophagy has been associated with the development of similar skeletal abnormalities and also with liver disease, suggesting that disruption of these RINT1 functions may explain the liver and skeletal findings. Clarifying the pathomechanism underlying this gene-disease relationship may inform therapeutic opportunities.

6.
J Inherit Metab Dis ; 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31119744

RESUMO

Given the rapidly decreasing cost and increasing speed and accessibility of massively parallel technologies, the integration of comprehensive genomic, transcriptomic, and proteomic data into a "multi-omics" diagnostic pipeline is within reach. Even though genomic analysis has the capability to reveal all possible perturbations in our genetic code, analysis typically reaches a diagnosis in just 35% of cases, with a diagnostic gap arising due to limitations in prioritization and interpretation of detected variants. Here we review the utility of complementing genetic data with transcriptomic data and give a perspective for the introduction of proteomics into the diagnostic pipeline. Together these methodologies enable comprehensive capture of the functional consequence of variants, unobtainable by the analysis of each methodology in isolation. This facilitates functional annotation and reprioritization of candidate genes and variants-a promising approach to shed light on the underlying molecular cause of a patient's disease, increasing diagnostic rate, and allowing actionability in clinical practice.

7.
J Inherit Metab Dis ; 42(5): 909-917, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31059585

RESUMO

Diagnostics for suspected mitochondrial disease (MD) can be challenging and necessitate invasive procedures like muscle biopsy. This is due to the extremely broad genetic and phenotypic spectrum, disease genes on both nuclear and mitochondrial DNA (mtDNA), and the tissue specificity of mtDNA variants. Exome sequencing (ES) has revolutionized the diagnostics for MD. However, the nuclear and mtDNA are investigated with separate tests, increasing costs and duration of diagnostics. The full potential of ES is often not exploited as the additional analysis of "off-target reads" deriving from the mtDNA can be used to analyze both genomes. We performed mtDNA analysis by ES of 2111 cases in a clinical setting. We further assessed the recall rate and precision as well as the estimation of heteroplasmy by ES data by comparison with targeted mtDNA next generation sequencing in 49 cases. ES identified known pathogenic mtDNA point mutations in 38 individuals, increasing the diagnostic yield by nearly 2%. Analysis of mtDNA variants by ES had a high recall rate (96.2 ± 5.6%) and an excellent precision (99.5 ± 2.2%) when compared to the gold standard of targeted mtDNA next generation sequencing. ES estimated heteroplasmy levels with an average difference of 6.6 ± 3.8%, sufficient for clinical decision making. Taken together, the mtDNA analysis from ES is of sufficient quality for clinical diagnostics. We therefore propose ES, investigating both nuclear and mtDNA, as first line test in individuals with suspected MD. One should be aware, that a negative result does not exclude MD and necessitates further test (in additional tissues).

8.
Genet Med ; 21(11): 2521-2531, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31092906

RESUMO

PURPOSE: Skeletal muscle growth and regeneration rely on muscle stem cells, called satellite cells. Specific transcription factors, particularly PAX7, are key regulators of the function of these cells. Knockout of this factor in mice leads to poor postnatal survival; however, the consequences of a lack of PAX7 in humans have not been established. METHODS: Here, we study five individuals with myopathy of variable severity from four unrelated consanguineous couples. Exome sequencing identified pathogenic variants in the PAX7 gene. Clinical examination, laboratory tests, and muscle biopsies were performed to characterize the disease. RESULTS: The disease was characterized by hypotonia, ptosis, muscular atrophy, scoliosis, and mildly dysmorphic facial features. The disease spectrum ranged from mild to severe and appears to be progressive. Muscle biopsies showed the presence of atrophic fibers and fibroadipose tissue replacement, with the absence of myofiber necrosis. A lack of PAX7 expression was associated with satellite cell pool exhaustion; however, the presence of residual myoblasts together with regenerating myofibers suggest that a population of PAX7-independent myogenic cells partially contributes to muscle regeneration. CONCLUSION: These findings show that biallelic variants in the master transcription factor PAX7 cause a new type of myopathy that specifically affects satellite cell survival.

9.
Hum Mutat ; 40(10): 1731-1748, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31045291

RESUMO

Mutations in either the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA metabolism, including ELAC2. The ELAC2 gene codes for the mitochondrial RNase Z, responsible for endonucleolytic cleavage of the 3' ends of mitochondrial pre-tRNAs. Here, we report the identification of 16 novel ELAC2 variants in individuals presenting with mitochondrial respiratory chain deficiency, hypertrophic cardiomyopathy (HCM), and lactic acidosis. We provide evidence for the pathogenicity of the novel missense variants by studying the RNase Z activity in an in vitro system. We also modeled the residues affected by a missense mutation in solved RNase Z structures, providing insight into enzyme structure and function. Finally, we show that primary fibroblasts from the affected individuals have elevated levels of unprocessed mitochondrial RNA precursors. Our study thus broadly confirms the correlation of ELAC2 variants with severe infantile-onset forms of HCM and mitochondrial respiratory chain dysfunction. One rare missense variant associated with the occurrence of prostate cancer (p.Arg781His) impairs the mitochondrial RNase Z activity of ELAC2, suggesting a functional link between tumorigenesis and mitochondrial RNA metabolism.

10.
Hum Genet ; 138(4): 375-388, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30852652

RESUMO

Metabolic coherence (MC) is a network-based approach to dimensionality reduction that can be used, for example, to interpret the joint expression of genes linked to human metabolism. Computationally, the derivation of 'transcriptomic' MC involves mapping of an individual gene expression profile onto a gene-centric network derived beforehand from a metabolic network (currently Recon2), followed by the determination of the connectivity of a particular, profile-specific subnetwork. The biological significance of MC has been exemplified previously in the context of human inflammatory bowel disease, among others, but the genetic architecture of this quantitative cellular trait is still unclear. Therefore, we performed a genome-wide association study (GWAS) of MC in the 1000 Genomes/ GEUVADIS data (n = 457) and identified a solitary genome-wide significant association with single nucleotide polymorphisms (SNPs) in the intronic region of the cadherin 18 (CDH18) gene on chromosome 5 (lead SNP: rs11744487, p = 1.2 × 10- 8). Cadherin 18 is a transmembrane protein involved in human neural development and cell-to-cell signaling. Notably, genetic variation at the CDH18 locus has been associated with metabolic syndrome-related traits before. Replication of our genome-wide significant GWAS result was successful in another population study from the Netherlands (BIOS, n = 2661; lead SNP), but failed in two additional studies (KORA, Germany, n = 711; GENOA, USA, n = 411). Besides sample size issues, we surmise that these discrepant findings may be attributable to technical differences. While 1000 Genomes/GEUVADIS and BIOS gene expression profiles were generated by RNA sequencing, the KORA and GENOA data were microarray-based. In addition to providing first evidence for a link between regional genetic variation and a metabolism-related characteristic of human transcriptomes, our findings highlight the benefit of adopting a systems biology-oriented approach to molecular data analysis.


Assuntos
Caderinas/genética , Loci Gênicos , Redes e Vias Metabólicas/genética , Metabolismo/genética , Transcriptoma , Estudos de Coortes , Feminino , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
11.
Eur J Hum Genet ; 27(6): 879-887, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30723317

RESUMO

Wilson disease (WD) is an autosomal recessive disease of copper excess due to pathogenic variants in the ATP7B gene coding for a copper-transporting ATPase. We present a 5-year-old girl with the homozygous frame shift variant NM_000053.3: c.19_20del in exon 1 of ATP7B (consecutive exon numbering with c.1 as first nucleotide of exon 1), detected by whole-exome sequencing as a secondary finding. The variant leads to a premature termination codon in exon 2. The girl exhibited no WD symptoms and no abnormalities in liver biopsy. ATP7B liver mRNA expression was comparable to healthy controls suggesting that nonsense-mediated mRNA decay (NMD) could be bypassed by the mechanism of translation reinitiation. To verify this hypothesis, a CMV-driven ATP7B minigene (pcDNA3) was equipped with the authentic ATP7B 5' untranslated region  and a truncated intron 2. We introduced c.19_20del by site-directed mutagenesis and overexpressed the constructs in HEK293T cells. We analyzed ATP7B expression by qRT-PCR, northern and western blot, and examined protein function by copper export capacity assays. Northern blot, qRT-PCR, and western blot revealed that c.19_20del ATP7B mRNA and protein is expressed in size and amount comparable to wild-type. Copper export capacity was also comparable to wild-type. Our results indicate that c.19_20del in ATP7B is able to bypass NMD by translation reinitiation, demonstrating that the classification of truncating variants as pathogenic without additional investigations should be done carefully.

12.
Pediatrics ; 143(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30705142

RESUMO

Pediatric intractable autoimmune hepatitis is rare and may be responsible for acute liver failure. Mutations in the itchy E3 ubiquitin protein ligase (ITCH) gene (located on chromosome 20q11.22) can lead to a deficiency of the encoded protein, resulting in increased T-cell activity with lack of immune tolerance and manifestation of a complex systemic autoimmune disease. A 1-year-old girl of consanguineous parents received a liver transplant (LT) because of acute liver failure attributed to a drug-induced hypereosinophilic syndrome with positive liver-kidney-mikrosome-2 antibodies. Notable findings were syndromic features, dystrophy, short stature, psychomotor retardation, and muscular hypotonia. Later, we saw corticosteroid-sensitive rejections as well as a systemic autoimmune disease with detection of specific antibodies (de novo autoimmune hepatitis, thyroiditis with exophthalmos, diabetes mellitus type 1, and immune neutropenia). Histologically, liver cirrhosis with lobular inflammatory infiltrates, giant-cell hepatitis, and ductopenia was verified in chronic cholestasis. Shortly after a second LT, a comparable liver histology could be detected, and viral, bacterial, and mycotic infections deteriorated the general health condition. Because of refractory pancytopenia related to portal hypertension and hypersplenism, a posttransplant lymphoproliferative disorder was excluded. One year after the second LT, epidural and subdural bleeding occurred. Three months afterward, the girl died of sepsis. Postmortem, whole-exome sequencing revealed a homozygous mutation in the ITCH gene. A biallelic mutation in ITCH can cause a severe syndromic multisystem autoimmune disease with the above phenotypic characteristics and acute liver failure because of autoimmune hepatitis. This case reveals the importance of ubiquitin pathways for regulation of the immune system.


Assuntos
Hepatite Autoimune/genética , Falência Hepática Aguda/genética , Transplante de Fígado/tendências , Mutação/genética , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/genética , Sequência de Bases , Pré-Escolar , Evolução Fatal , Feminino , Hepatite Autoimune/diagnóstico , Hepatite Autoimune/cirurgia , Humanos , Lactente , Falência Hepática Aguda/diagnóstico , Falência Hepática Aguda/cirurgia
13.
Mol Syst Biol ; 15(2): e8513, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777893

RESUMO

Despite their importance in determining protein abundance, a comprehensive catalogue of sequence features controlling protein-to-mRNA (PTR) ratios and a quantification of their effects are still lacking. Here, we quantified PTR ratios for 11,575 proteins across 29 human tissues using matched transcriptomes and proteomes. We estimated by regression the contribution of known sequence determinants of protein synthesis and degradation in addition to 45 mRNA and 3 protein sequence motifs that we found by association testing. While PTR ratios span more than 2 orders of magnitude, our integrative model predicts PTR ratios at a median precision of 3.2-fold. A reporter assay provided functional support for two novel UTR motifs, and an immobilized mRNA affinity competition-binding assay identified motif-specific bound proteins for one motif. Moreover, our integrative model led to a new metric of codon optimality that captures the effects of codon frequency on protein synthesis and degradation. Altogether, this study shows that a large fraction of PTR ratio variation in human tissues can be predicted from sequence, and it identifies many new candidate post-transcriptional regulatory elements.


Assuntos
Proteínas/genética , Proteoma/genética , Distribuição Tecidual/genética , Transcriptoma/genética , Regulação da Expressão Gênica/genética , Genoma Humano/genética , Humanos , Espectrometria de Massas/métodos , Proteômica/métodos , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos
14.
Brain ; 142(1): 50-58, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30576410

RESUMO

Physical stress, including high temperatures, may damage the central metabolic nicotinamide nucleotide cofactors [NAD(P)H], generating toxic derivatives [NAD(P)HX]. The highly conserved enzyme NAD(P)HX dehydratase (NAXD) is essential for intracellular repair of NAD(P)HX. Here we present a series of infants and children who suffered episodes of febrile illness-induced neurodegeneration or cardiac failure and early death. Whole-exome or whole-genome sequencing identified recessive NAXD variants in each case. Variants were predicted to be potentially deleterious through in silico analysis. Reverse-transcription PCR confirmed altered splicing in one case. Subject fibroblasts showed highly elevated concentrations of the damaged cofactors S-NADHX, R-NADHX and cyclic NADHX. NADHX accumulation was abrogated by lentiviral transduction of subject cells with wild-type NAXD. Subject fibroblasts and muscle biopsies showed impaired mitochondrial function, higher sensitivity to metabolic stress in media containing galactose and azide, but not glucose, and decreased mitochondrial reactive oxygen species production. Recombinant NAXD protein harbouring two missense variants leading to the amino acid changes p.(Gly63Ser) and p.(Arg608Cys) were thermolabile and showed a decrease in Vmax and increase in KM for the ATP-dependent NADHX dehydratase activity. This is the first study to identify pathogenic variants in NAXD and to link deficient NADHX repair with mitochondrial dysfunction. The results show that NAXD deficiency can be classified as a metabolite repair disorder in which accumulation of damaged metabolites likely triggers devastating effects in tissues such as the brain and the heart, eventually leading to early childhood death.


Assuntos
Hidroliases/deficiência , Doenças Neurodegenerativas/genética , Pré-Escolar , Simulação por Computador , Feminino , Febre/complicações , Febre/metabolismo , Fibroblastos/metabolismo , Vetores Genéticos , Humanos , Hidroliases/genética , Lactente , Cinética , Lentivirus , Masculino , Mitocôndrias/metabolismo , Mutação , NAD/análogos & derivados , NAD/metabolismo , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/metabolismo , Cultura Primária de Células , Sequenciamento Completo do Genoma
15.
Am J Hum Genet ; 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30503520

RESUMO

RNA sequencing (RNA-seq) is gaining popularity as a complementary assay to genome sequencing for precisely identifying the molecular causes of rare disorders. A powerful approach is to identify aberrant gene expression levels as potential pathogenic events. However, existing methods for detecting aberrant read counts in RNA-seq data either lack assessments of statistical significance, so that establishing cutoffs is arbitrary, or rely on subjective manual corrections for confounders. Here, we describe OUTRIDER (Outlier in RNA-Seq Finder), an algorithm developed to address these issues. The algorithm uses an autoencoder to model read-count expectations according to the gene covariation resulting from technical, environmental, or common genetic variations. Given these expectations, the RNA-seq read counts are assumed to follow a negative binomial distribution with a gene-specific dispersion. Outliers are then identified as read counts that significantly deviate from this distribution. The model is automatically fitted to achieve the best recall of artificially corrupted data. Precision-recall analyses using simulated outlier read counts demonstrated the importance of controlling for covariation and significance-based thresholds. OUTRIDER is open source and includes functions for filtering out genes not expressed in a dataset, for identifying outlier samples with too many aberrantly expressed genes, and for detecting aberrant gene expression on the basis of false-discovery-rate-adjusted p values. Overall, OUTRIDER provides an end-to-end solution for identifying aberrantly expressed genes and is suitable for use by rare-disease diagnostic platforms.

16.
Clin Epigenetics ; 10(1): 161, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30587240

RESUMO

BACKGROUND: Most research into myocardial infarctions (MIs) have focused on preventative efforts. For survivors, the occurrence of an MI represents a major clinical event that can have long-lasting consequences. There has been little to no research into the molecular changes that can occur as a result of an incident MI. Here, we use three cohorts to identify epigenetic changes that are indicative of an incident MI and their association with gene expression and metabolomics. RESULTS: Using paired samples from the KORA cohort, we screened for DNA methylation loci (CpGs) whose change in methylation is potentially indicative of the occurrence of an incident MI between the baseline and follow-up exams. We used paired samples from the NAS cohort to identify 11 CpGs which were predictive in an independent cohort. After removing two CpGs associated with medication usage, we were left with an "epigenetic fingerprint" of MI composed of nine CpGs. We tested this fingerprint in the InCHIANTI cohort where it moderately discriminated incident MI occurrence (AUC = 0.61, P = 6.5 × 10-3). Returning to KORA, we associated the epigenetic fingerprint loci with cis-gene expression and integrated it into a gene expression-metabolomic network, which revealed links between the epigenetic fingerprint CpGs and branched chain amino acid (BCAA) metabolism. CONCLUSIONS: There are significant changes in DNA methylation after an incident MI. Nine of these CpGs show consistent changes in multiple cohorts, significantly discriminate MI in independent cohorts, and were independent of medication usage. Integration with gene expression and metabolomics data indicates a link between MI-associated epigenetic changes and BCAA metabolism.


Assuntos
Metilação de DNA , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , Leucócitos/química , Infarto do Miocárdio/genética , Idoso , Ilhas de CpG , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Fatores de Risco
17.
Am J Hum Genet ; 103(5): 817-825, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401461

RESUMO

ADP-ribosylation is a reversible posttranslational modification used to regulate protein function. ADP-ribosyltransferases transfer ADP-ribose from NAD+ to the target protein, and ADP-ribosylhydrolases, such as ADPRHL2, reverse the reaction. We used exome sequencing to identify five different bi-allelic pathogenic ADPRHL2 variants in 12 individuals from 8 families affected by a neurodegenerative disorder manifesting in childhood or adolescence with key clinical features including developmental delay or regression, seizures, ataxia, and axonal (sensori-)motor neuropathy. ADPRHL2 was virtually absent in available affected individuals' fibroblasts, and cell viability was reduced upon hydrogen peroxide exposure, although it was rescued by expression of wild-type ADPRHL2 mRNA as well as treatment with a PARP1 inhibitor. Our findings suggest impaired protein ribosylation as another pathway that, if disturbed, causes neurodegenerative diseases.

18.
Am J Hum Genet ; 103(4): 592-601, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30245030

RESUMO

Isolated complex I deficiency is a common biochemical phenotype observed in pediatric mitochondrial disease and often arises as a consequence of pathogenic variants affecting one of the ∼65 genes encoding the complex I structural subunits or assembly factors. Such genetic heterogeneity means that application of next-generation sequencing technologies to undiagnosed cohorts has been a catalyst for genetic diagnosis and gene-disease associations. We describe the clinical and molecular genetic investigations of four unrelated children who presented with neuroradiological findings and/or elevated lactate levels, highly suggestive of an underlying mitochondrial diagnosis. Next-generation sequencing identified bi-allelic variants in NDUFA6, encoding a 15 kDa LYR-motif-containing complex I subunit that forms part of the Q-module. Functional investigations using subjects' fibroblast cell lines demonstrated complex I assembly defects, which were characterized in detail by mass-spectrometry-based complexome profiling. This confirmed a marked reduction in incorporated NDUFA6 and a concomitant reduction in other Q-module subunits, including NDUFAB1, NDUFA7, and NDUFA12. Lentiviral transduction of subjects' fibroblasts showed normalization of complex I. These data also support supercomplex formation, whereby the ∼830 kDa complex I intermediate (consisting of the P- and Q-modules) is in complex with assembled complex III and IV holoenzymes despite lacking the N-module. Interestingly, RNA-sequencing data provided evidence that the consensus RefSeq accession number does not correspond to the predominant transcript in clinically relevant tissues, prompting revision of the NDUFA6 RefSeq transcript and highlighting not only the importance of thorough variant interpretation but also the assessment of appropriate transcripts for analysis.

19.
Neuropediatrics ; 49(6): 373-378, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30114719

RESUMO

Neonatal-onset movement disorders, especially in combination with seizures, are rare and often related to mitochondrial disorders. 3-methylglutaconic aciduria (3-MGA-uria) is a marker for mitochondrial dysfunction. In particular, consistently elevated urinary excretion of 3-methylglutaconic acid is the hallmark of a small but growing group of inborn errors of metabolism (IEM) due to defective phospholipid remodeling or mitochondrial membrane-associated disorders (mutations in TAZ, SERAC1, OPA3, CLPB, DNAJC19, TMEM70, TIMM50). Exome/genome sequencing is a powerful tool for the diagnosis of the clinically and genetically heterogeneous mitochondrial disorders. Here, we report 11 individuals, of whom 2 are previously unpublished, with biallelic variants in high temperature requirement protein A2 (HTRA2) encoding a mitochondria-localized serine protease. All individuals presented a recognizable phenotype with neonatal- or infantile-onset neurodegeneration and death within the first month of life. Hallmark features were central hypopnea/apnea leading to respiratory insufficiency, seizures, neutropenia, 3-MGA-uria, tonus dysregulation, and dysphagia. Tremor, jitteriness, dystonia, and/or clonus were also common. HTRA2 defect should be grouped under the IEM with 3-MGA-uria as discriminating feature. Clinical characteristics overlap with other disorders of this group suggesting a common underlying pathomechanism. Urinary organic acid analysis is a noninvasive and inexpensive test that can guide further genetic testing in children with suggestive clinical findings.

20.
J Med Genet ; 55(11): 753-764, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30120216

RESUMO

BACKGROUND: The combination of febrile illness-induced encephalopathy and rhabdomyolysis has thus far only been described in disorders that affect cellular energy status. In the absence of specific metabolic abnormalities, diagnosis can be challenging. OBJECTIVE: The objective of this study was to identify and characterise pathogenic variants in two individuals from unrelated families, both of whom presented clinically with a similar phenotype that included neurodevelopmental delay, febrile illness-induced encephalopathy and episodes of rhabdomyolysis, followed by developmental arrest, epilepsy and tetraplegia. METHODS: Whole exome sequencing was used to identify pathogenic variants in the two individuals. Biochemical and cell biological analyses were performed on fibroblasts from these individuals and a yeast two-hybrid analysis was used to assess protein-protein interactions. RESULTS: Probands shared a homozygous TRAPPC2L variant (c.109G>T) resulting in a p.Asp37Tyr missense variant. TRAPPC2L is a component of transport protein particle (TRAPP), a group of multisubunit complexes that function in membrane traffic and autophagy. Studies in patient fibroblasts as well as in a yeast system showed that the p.Asp37Tyr protein was present but not functional and resulted in specific membrane trafficking delays. The human missense mutation and the analogous mutation in the yeast homologue Tca17 ablated the interaction between TRAPPC2L and TRAPPC10/Trs130, a component of the TRAPP II complex. Since TRAPP II activates the GTPase RAB11, we examined the activation state of this protein and found increased levels of the active RAB, correlating with changes in its cellular morphology. CONCLUSIONS: Our study implicates a RAB11 pathway in the aetiology of the TRAPPC2L disorder and has implications for other TRAPP-related disorders with similar phenotypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA