Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Mais filtros

Base de dados
Intervalo de ano de publicação
Int J Nanomedicine ; 14: 1725-1736, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30880976


Background: Nanophase surface properties of titanium alloys must be obtained for a suitable biological performance, particularly to facilitate cell adhesion and bone tissue formation. Obtaining a bulk nanostructured material using severe plastic deformation is an ideal processing route to improve the mechanical performance of titanium alloys. By decreasing the grain size of a metallic material, a superior strength improvement can be obtained, while surface modification of a nanostructured surface can produce an attractive topography able to induce biological responses in osteoblastic cells. Methods: Aiming to achieve such an excellent synergetic performance, a processing route, which included equal channel angular pressing (ECAP), hot and cold extrusion, and heat treatments, was used to produce a nanometric and ultrafine-grained (UFG) microstructure in the Ti-6Al-7Nb alloy (around of 200 nm). Additionally, UFG samples were surface-modified with acid etching (UFG-A) to produce a uniform micron and submicron porosity on the surface. Subsequently, alkaline treatment (UFG-AA) produced a sponge-like nanotopographic substrate able to modulate cellular interactions. Results: After several kinds of biological tests for both treatment conditions (UFG-A and UFG-AA), the main results have shown that there was no cytotoxicity, expressed alkaline phosphatase activity and total protein amounts without statistical differences compared to control. However, the UFG-AA samples presented an attractive effect on the cell membranes, and cell adhesions were preferentially induced as compared with UFG-A. Both conditions demonstrated cell projections, but for UFG-AA, cells were more widely dispersed, and more quantities of filopodia formation could be observed. Conclusion: Herein, the reasons for such behaviors are discussed, and further results are presented in addition to those mentioned above.

Tecnologia Biomédica/métodos , Tamanho da Partícula , Titânio/farmacologia , Líquidos Corporais/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Teste de Materiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Molhabilidade