Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 58(16): 11256-11268, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31385695

RESUMO

The magnetism of the mixed-valence high-spin cluster [Mn18SrO8(N3)7Cl(MedhmpH)12(MeCN)6]Cl2 (1) exhibiting intramolecular ferromagnetic interactions was studied using inelastic neutron scattering (INS), and reliable values for the exchange coupling constants were determined based on the quality of simultaneous fits to the INS and magnetic data. The challenge of the huge size of the Hilbert space (3 375 000) and many exchange coupling constants (7 assuming a C3 symmetry) generally encountered in large spin clusters was resolved as follows: (a) The results of the restricted Hilbert space ferromagnetic cluster spin wave theory were compared to the experimental spectroscopic data. The observed INS transitions were thus assigned to spin wave excitations in a bounded ferromagnetic spin cluster and moreover could be visualized in a straightforward way based on this theory. (b) Simultaneously, Quantum Monte Carlo (QMC) calculations of the temperature-dependent magnetic susceptibility with the same parameter set were compared to the experimental data. Application of state-of-the-art QMC algorithms, as available in the open source ALPS package, in ferromagnetic clusters avoids the full Hamiltonian diagonalization without sacrificing calculation accuracy of the magnetic susceptibility down to the lowest temperatures, which was crucial for the successful analysis. The combined fits revealed two exchange-coupling models with equally good overall agreement to the data. Our preferred model was inspired by magnetostructural correlations and is consistent with them. The model involves three different exchange interactions, one describing the interaction between the core MnIII spins Ja = 14.3(1.0) K and two interactions linking the core and the peripheral MnII spins: Jb = 8.3(4) K and J6 = 3.6(4) K. The use of open-source QMC software and our systematic approach to fitting multiple sets of data obtained by different experimental techniques are described in detail and are generally applicable for understanding large ferromagnetically coupled clusters.

2.
Inorg Chem ; 57(10): 6076-6083, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29741382

RESUMO

A pentanuclear CuII5-hydroxo cluster possessing an unusual linear-shaped configuration was formed and crystallized under hydrothermal conditions as a result of the unique cooperation of bridging 1,2,4-triazole ligand ( trans-1,4-cyclohexanediyl-4,4'-bi(1,2,4-triazole) ( tr2 cy)), MoVI-oxide, and CuSO4. This structural motif can be rationalized by assuming in situ generation of {Cu2Mo6O22}4- anions, which represent heteroleptic derivatives of γ-type [Mo8O26]4- further interlinked by [Cu3(OH)2]4+ cations through [ N- N] bridges. The framework structure of the resulting compound [Cu5(OH)2( tr2 cy)2Mo6O22]·6H2O (1) is thus built up from neutral heterometallic {Cu5(OH)2Mo6O22} n layers pillared with tetradentate tr2 cy. Quantum-chemical calculations demonstrate that the exclusive site of the parent γ-[Mo8O26]4- cluster into which CuII inserts corresponds with the site that has the lowest defect ("MoO2 vacancy") formation energy, demonstrating how the local metal-polyoxomolybdate chemistry can express itself in the final crystal structure. Magnetic susceptibility measurements of 1 show strong antiferromagnetic coupling within the Cu5 chain with exchange parameters J1 = -500(40) K (-348(28) cm-1), J2 = -350(10) K (-243(7) cm-1) and g = 2.32(2), χ2 = 6.5 × 10-4. Periodic quantum-chemical calculations reproduce the antiferromagnetic character of 1 and connect it with an effective ligand-mediated spin coupling mechanism that comes about from the favorable structural arrangement between the Cu centers and the OH-, O2-, and tr2 cy bridging ligands.

3.
Inorg Chem ; 54(9): 4371-6, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25870890

RESUMO

The novel iridate Ba8Al2IrO14 was prepared as single crystals by self-flux method, thereby providing a rare example of an all-Ir(VI) compound that can be synthesized under ambient pressure conditions. The preparation of all-Ir(6+) iridate without using traditional high-pressure techniques has to our knowledge previously only been reported in Nd2K2IrO7 and Sm2K2IrO7. The monoclinic crystal structure (space group C2/m, No.12) is stable down to 90 K and contains layers of IrO6 octahedra separated by Ba and AlO4 tetrahedra. The material exhibits insulating behavior with a narrow band gap of ∼0.6 eV. The positive Seebeck coefficient indicates hole-like dominant charge carriers. Susceptibility measurement shows antiferromagnetic coupling with no order down to 2 K.

4.
Phys Rev Lett ; 109(16): 167204, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23215121

RESUMO

BiCu(2)PO(6) is a frustrated two-leg spin-ladder compound with a spin gap that can be closed with a magnetic field of approximately 20 T. This quantum phase transition and its related phase diagram as a function of magnetic field and temperature (H, T) are investigated up to 60 T by means of specific heat, magnetocaloric effect, magnetization, and magnetostriction measurements. In contrast to other gapped quantum magnets, BiCu(2)PO(6) undergoes a series of unexpected first- and second-order phase transitions when an external magnetic field is applied along the crystallographic c axis. The application of a magnetic field along the b axis induces two second-order phase transitions. We propose that the anisotropy and complex phase diagram result from the interplay between strong geometrical frustration and spin-orbit interaction necessary for the description of this fascinating magnetic system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA