Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mutat ; 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31696996

RESUMO

Hereditary spastic paraplegia (HSP) is a group of disorders with predominant symptoms of lower-extremity weakness and spasticity. Despite the delineation of numerous genetic causes of HSP, a significant portion of individuals with HSP remain molecularly undiagnosed. Through exome sequencing, we identified five unrelated families with childhood-onset nonsyndromic HSP, all presenting with progressive spastic gait, leg clonus, and toe walking starting from 7-8 years old. A recurrent two-base pair deletion (c.426_427delGA, p.K143Sfs*15) in the UBAP1 gene was found in four families, and a similar variant (c.475_476delTT, p.F159*) was detected in a fifth family. The variant was confirmed to be de novo in two families and inherited from affected parent in two other families. RNA studies performed in lymphocytes from one patient with the de novo c.426_427delGA variant demonstrated escape of nonsense-mediated decay (NMD) of the UBAP1 mutant transcript, suggesting the generation of a truncated protein. Both variants identified in this study are predicted to result in truncated proteins losing the capacity of binding to ubiquitinated proteins, hence appearing to exhibit a dominant-negative effect on the normal function of the endosome-specific ESCRT-I (endosomal sorting complexes required for transport-I) complex. This article is protected by copyright. All rights reserved.

2.
J Med Genet ; 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31586945

RESUMO

BACKGROUND: Since 1994, over 50 families affected by the episodic ataxia type 1 disease spectrum have been described with mutations in KCNA1, encoding the voltage-gated K+ channel subunit Kv1.1. All of these mutations are either transmitted in an autosomal-dominant mode or found as de novo events. METHODS: A patient presenting with a severe combination of dyskinesia and neonatal epileptic encephalopathy was sequenced by whole-exome sequencing (WES). A candidate variant was tested using cellular assays and patch-clamp recordings. RESULTS: WES revealed a homozygous variant (p.Val368Leu) in KCNA1, involving a conserved residue in the pore domain, close to the selectivity signature sequence for K+ ions (TVGYG). Functional analysis showed that mutant protein alone failed to produce functional channels in homozygous state, while coexpression with wild-type produced no effects on K+ currents, similar to wild-type protein alone. Treatment with oxcarbazepine, a sodium channel blocker, proved effective in controlling seizures. CONCLUSION: This newly identified variant is the first to be reported to act in a recessive mode of inheritance in KCNA1. These findings serve as a cautionary tale for the diagnosis of channelopathies, in which an unreported phenotypic presentation or mode of inheritance for the variant of interest can hinder the identification of causative variants and adequate treatment choice.

3.
Mov Disord ; 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31433872

RESUMO

BACKGROUND: Pathogenic variants in the spastic paraplegia type 7 gene cause a complicated hereditary spastic paraplegia phenotype associated with classical features of mitochondrial diseases, including ataxia, progressive external ophthalmoplegia, and deletions of mitochondrial DNA. OBJECTIVES: To better characterize spastic paraplegia type 7 disease with a clinical, genetic, and functional analysis of a Spanish cohort of spastic paraplegia type 7 patients. METHODS: Genetic analysis was performed in patients suspecting hereditary spastic paraplegia and in 1 patient with parkinsonism and Pisa syndrome, through next-generation sequencing, whole-exome sequencing, targeted Sanger sequencing, and multiplex ligation-dependent probe analysis, and blood mitochondrial DNA levels determined by quantitative polymerase chain reaction. RESULTS: Thirty-five patients were found to carry homozygous or compound heterozygous pathogenic variants in the spastic paraplegia type 7 gene. Mean age at onset was 40 years (range, 12-63); 63% of spastic paraplegia type 7 patients were male, and three-quarters of all patients had at least one allele with the c.1529C>T (p.Ala510Val) mutation. Eighty percent of the cohort showed a complicated phenotype, combining ataxia and progressive external ophthalmoplegia (65% and 26%, respectively). Parkinsonism was observed in 21% of cases. Analysis of blood mitochondrial DNA indicated that both patients and carriers of spastic paraplegia type 7 pathogenic variants had markedly lower levels of mitochondrial DNA than control subjects (228 per haploid nuclear DNA vs. 176 vs. 573, respectively; P < 0.001). CONCLUSIONS: Parkinsonism is a frequent finding in spastic paraplegia type 7 patients. Spastic paraplegia type 7 pathogenic variants impair mitochondrial DNA homeostasis irrespective of the number of mutant alleles, type of variant, and patient or carrier status. Thus, spastic paraplegia type 7 supports mitochondrial DNA maintenance, and variants in the gene may cause parkinsonism owing to mitochondrial DNA abnormalities. Moreover, mitochondrial DNA blood analysis could be a useful biomarker to detect at risk families. © 2019 International Parkinson and Movement Disorder Society.

4.
J Inherit Metab Dis ; 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31339582

RESUMO

Transport And Golgi Organization protein 2 (TANGO2) deficiency has recently been identified as a rare metabolic disorder with a distinct clinical and biochemical phenotype of recurrent metabolic crises, hypoglycemia, lactic acidosis, rhabdomyolysis, arrhythmias, and encephalopathy with cognitive decline. We report nine subjects from seven independent families, and we studied muscle histology, respiratory chain enzyme activities in skeletal muscle and proteomic signature of fibroblasts. All nine subjects carried autosomal recessive TANGO2 mutations. Two carried the reported deletion of exons 3 to 9, one homozygous, one heterozygous with a 22q11.21 microdeletion inherited in trans. The other subjects carried three novel homozygous (c.262C>T/p.Arg88*; c.220A>C/p.Thr74Pro; c.380+1G>A), and two further novel heterozygous (c.6_9del/p.Phe6del); c.11-13delTCT/p.Phe5del mutations. Immunoblot analysis detected a significant decrease of TANGO2 protein. Muscle histology showed mild variation of fiber diameter, no ragged-red/cytochrome c oxidase-negative fibers and a defect of multiple respiratory chain enzymes and coenzyme Q10 (CoQ10 ) in two cases, suggesting a possible secondary defect of oxidative phosphorylation. Proteomic analysis in fibroblasts revealed significant changes in components of the mitochondrial fatty acid oxidation, plasma membrane, endoplasmic reticulum-Golgi network and secretory pathways. Clinical presentation of TANGO2 mutations is homogeneous and clinically recognizable. The hemizygous mutations in two patients suggest that some mutations leading to allele loss are difficult to detect. A combined defect of the respiratory chain enzymes and CoQ10 with altered levels of several membrane proteins provides molecular insights into the underlying pathophysiology and may guide rational new therapeutic interventions.

5.
Neurotherapeutics ; 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31077039

RESUMO

X-Adrenoleukodystrophy (X-ALD) and its adult-onset, most prevalent variant adrenomyeloneuropathy (AMN) are caused by mutations in the peroxisomal transporter of the very long-chain fatty acid ABCD1. AMN patients classically present spastic paraparesis that can progress over decades, and a satisfactory treatment is currently lacking. Oxidative stress is an early culprit in X-ALD pathogenesis. A combination of antioxidants halts the clinical progression and axonal damage in a murine model of AMN, providing a strong rationale for clinical translation. In this phase II pilot, open-label study, 13 subjects with AMN were administered a high dose of α-tocopherol, N-acetylcysteine, and α-lipoic acid in combination. The primary outcome was the validation of a set of biomarkers for monitoring the biological effects of this and future treatments. Functional clinical scales, the 6-minute walk test (6MWT), electrophysiological studies, and cerebral MRI served as secondary outcomes. Most biomarkers of oxidative damage and inflammation were normalized upon treatment, indicating an interlinked redox and inflammatory homeostasis. Two of the inflammatory markers, MCP1 and 15-HETE, were predictive of the response to treatment. We also observed a significant decrease in central motor conduction time, together with an improvement or stabilization of the 6MWT in 8/10 subjects. This study provides a series of biomarkers that are useful to monitor redox and pro-inflammatory target engagement in future trials, together with candidate biomarkers that may serve for patient stratification and disease progression, which merit replication in future clinical trials. Moreover, the clinical results suggest a positive signal for extending these studies to phase III randomized, placebo-controlled, longer-term trials with the actual identified dose. ClinicalTrials.gov Identifier: NCT01495260.

6.
Brain ; 142(6): 1561-1572, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31135052

RESUMO

The endoplasmic reticulum enzyme fatty acid 2-hydroxylase (FA2H) plays a major role in the formation of 2-hydroxy glycosphingolipids, main components of myelin. FA2H deficiency in mice leads to severe central demyelination and axon loss. In humans it has been associated with phenotypes from the neurodegeneration with brain iron accumulation (fatty acid hydroxylase-associated neurodegeneration, FAHN), hereditary spastic paraplegia (HSP type SPG35) and leukodystrophy (leukodystrophy with spasticity and dystonia) spectrum. We performed an in-depth clinical and retrospective neurophysiological and imaging study in a cohort of 19 cases with biallelic FA2H mutations. FAHN/SPG35 manifests with early childhood onset predominantly lower limb spastic tetraparesis and truncal instability, dysarthria, dysphagia, cerebellar ataxia, and cognitive deficits, often accompanied by exotropia and movement disorders. The disease is rapidly progressive with loss of ambulation after a median of 7 years after disease onset and demonstrates little interindividual variability. The hair of FAHN/SPG35 patients shows a bristle-like appearance; scanning electron microscopy of patient hair shafts reveals deformities (longitudinal grooves) as well as plaque-like adhesions to the hair, likely caused by an abnormal sebum composition also described in a mouse model of FA2H deficiency. Characteristic imaging features of FAHN/SPG35 can be summarized by the 'WHAT' acronym: white matter changes, hypointensity of the globus pallidus, ponto-cerebellar atrophy, and thin corpus callosum. At least three of four imaging features are present in 85% of FA2H mutation carriers. Here, we report the first systematic, large cohort study in FAHN/SPG35 and determine the phenotypic spectrum, define the disease course and identify clinical and imaging biomarkers.

7.
J Med Genet ; 2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31004048

RESUMO

BACKGROUND: Alexander disease, an autosomal dominant leukodystrophy, is caused by missense mutations in GFAP. Although mostly diagnosed in children, associated with severe leukoencephalopathy, milder adult forms also exist. METHODS: A family affected by adult-onset spastic paraplegia underwent neurological examination and cerebral MRI. Two patients were sequenced by whole exome sequencing (WES). A candidate variant was functionally tested in an astrocytoma cell line. RESULTS: The novel variant in GFAP (Glial Fibrillary Acidic Protein) N-terminal head domain (p.Gly18Val) cosegregated in multiple relatives (LOD score: 2.7). All patients, even those with the mildest forms, showed characteristic signal changes or atrophy in the brainstem and spinal cord MRIs, and abnormal MRS. In vitro, this variant did not cause significant protein aggregation, in contrast to most Alexander disease mutations characterised so far. However, cell area analysis showed larger size, a feature previously described in patients and mouse models. CONCLUSION: We suggest that this variant causes variable expressivity and an attenuated phenotype of Alexander disease type II, probably associated with alternative pathogenic mechanisms, that is, astrocyte enlargement. GFAP analysis should be considered in adult-onset neurological presentations with pyramidal and bulbar symptoms, in particular when characteristic findings, such as the tadpole sign, are present in MRI. WES is a powerful tool to diagnose atypical cases.

8.
J Clin Invest ; 129(3): 1240-1256, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30620337

RESUMO

Sphingolipid imbalance is the culprit in a variety of neurological diseases, some affecting the myelin sheath. We have used whole-exome sequencing in patients with undetermined leukoencephalopathies to uncover the endoplasmic reticulum lipid desaturase DEGS1 as the causative gene in 19 patients from 13 unrelated families. Shared features among the cases include severe motor arrest, early nystagmus, dystonia, spasticity, and profound failure to thrive. MRI showed hypomyelination, thinning of the corpus callosum, and progressive thalamic and cerebellar atrophy, suggesting a critical role of DEGS1 in myelin development and maintenance. This enzyme converts dihydroceramide (DhCer) into ceramide (Cer) in the final step of the de novo biosynthesis pathway. We detected a marked increase of the substrate DhCer and DhCer/Cer ratios in patients' fibroblasts and muscle. Further, we used a knockdown approach for disease modeling in Danio rerio, followed by a preclinical test with the first-line treatment for multiple sclerosis, fingolimod (FTY720, Gilenya). The enzymatic inhibition of Cer synthase by fingolimod, 1 step prior to DEGS1 in the pathway, reduced the critical DhCer/Cer imbalance and the severe locomotor disability, increasing the number of myelinating oligodendrocytes in a zebrafish model. These proof-of-concept results pave the way to clinical translation.

9.
EMBO Mol Med ; 10(8)2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29997171

RESUMO

The nuclear factor erythroid 2-like 2 (NRF2) is the master regulator of endogenous antioxidant responses. Oxidative damage is a shared and early-appearing feature in X-linked adrenoleukodystrophy (X-ALD) patients and the mouse model (Abcd1 null mouse). This rare neurometabolic disease is caused by the loss of function of the peroxisomal transporter ABCD1, leading to an accumulation of very long-chain fatty acids and the induction of reactive oxygen species of mitochondrial origin. Here, we identify an impaired NRF2 response caused by aberrant activity of GSK-3ß. We find that GSK-3ß inhibitors can significantly reactivate the blunted NRF2 response in patients' fibroblasts. In the mouse models (Abcd1- and Abcd1-/Abcd2-/- mice), oral administration of dimethyl fumarate (DMF/BG12/Tecfidera), an NRF2 activator in use for multiple sclerosis, normalized (i) mitochondrial depletion, (ii) bioenergetic failure, (iii) oxidative damage, and (iv) inflammation, highlighting an intricate cross-talk governing energetic and redox homeostasis in X-ALD Importantly, DMF halted axonal degeneration and locomotor disability suggesting that therapies activating NRF2 hold therapeutic potential for X-ALD and other axonopathies with impaired GSK-3ß/NRF2 axis.

10.
Cell Rep ; 23(6): 1665-1677, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29742424

RESUMO

Rett syndrome (RTT) is the second leading cause of mental impairment in girls and is currently untreatable. RTT is caused, in more than 95% of cases, by loss-of-function mutations in the methyl CpG-binding protein 2 gene (MeCP2). We propose here a molecular target involved in RTT: the glycogen synthase kinase-3b (Gsk3b) pathway. Gsk3b activity is deregulated in Mecp2-knockout (KO) mice models, and SB216763, a specific inhibitor, is able to alleviate the clinical symptoms with consequences at the molecular and cellular levels. In vivo, inhibition of Gsk3b prolongs the lifespan of Mecp2-KO mice and reduces motor deficits. At the molecular level, SB216763 rescues dendritic networks and spine density, while inducing changes in the properties of excitatory synapses. Gsk3b inhibition can also decrease the nuclear activity of the Nfkb1 pathway and neuroinflammation. Altogether, our findings indicate that Mecp2 deficiency in the RTT mouse model is partially rescued following treatment with SB216763.

11.
Am J Hum Genet ; 102(5): 744-759, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29656859

RESUMO

RORα, the RAR-related orphan nuclear receptor alpha, is essential for cerebellar development. The spontaneous mutant mouse staggerer, with an ataxic gait caused by neurodegeneration of cerebellar Purkinje cells, was discovered two decades ago to result from homozygous intragenic Rora deletions. However, RORA mutations were hitherto undocumented in humans. Through a multi-centric collaboration, we identified three copy-number variant deletions (two de novo and one dominantly inherited in three generations), one de novo disrupting duplication, and nine de novo point mutations (three truncating, one canonical splice site, and five missense mutations) involving RORA in 16 individuals from 13 families with variable neurodevelopmental delay and intellectual disability (ID)-associated autistic features, cerebellar ataxia, and epilepsy. Consistent with the human and mouse data, disruption of the D. rerio ortholog, roraa, causes significant reduction in the size of the developing cerebellum. Systematic in vivo complementation studies showed that, whereas wild-type human RORA mRNA could complement the cerebellar pathology, missense variants had two distinct pathogenic mechanisms of either haploinsufficiency or a dominant toxic effect according to their localization in the ligand-binding or DNA-binding domains, respectively. This dichotomous direction of effect is likely relevant to the phenotype in humans: individuals with loss-of-function variants leading to haploinsufficiency show ID with autistic features, while individuals with de novo dominant toxic variants present with ID, ataxia, and cerebellar atrophy. Our combined genetic and functional data highlight the complex mutational landscape at the human RORA locus and suggest that dual mutational effects likely determine phenotypic outcome.

12.
Aging (Albany NY) ; 10(3): 295-296, 2018 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-29514133
13.
Brain Pathol ; 2018 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-29476661

RESUMO

Epigenomic changes may either cause disease or modulate its expressivity, adding a layer of complexity to mendelian diseases. X-linked adrenoleukodystrophy (X-ALD) is a rare neurometabolic condition exhibiting discordant phenotypes, ranging from a childhood cerebral inflammatory demyelination (cALD) to an adult-onset mild axonopathy in spinal cords (AMN). The AMN form may occur with superimposed inflammatory brain demyelination (cAMN). All patients harbor loss of function mutations in the ABCD1 peroxisomal transporter of very-long chain fatty acids. The factors that account for the lack of genotype-phenotype correlation, even within the same family, remain largely unknown. To gain insight into this matter, here we compared the genome-wide DNA methylation profiles of morphologically intact frontal white matter areas of children affected by cALD with adult cAMN patients, including male controls in the same age group. We identified a common methylomic signature between the two phenotypes, comprising (i) hypermethylation of genes harboring the H3K27me3 mark at promoter regions, (ii) hypermethylation of genes with major roles in oligodendrocyte differentiation such as MBP, CNP, MOG and PLP1 and (iii) hypomethylation of immune-associated genes such as IFITM1 and CD59. Moreover, we found increased hypermethylation in CpGs of genes involved in oligodendrocyte differentiation, and also in genes with H3K27me3 marks in their promoter regions in cALD compared with cAMN, correlating with transcriptional and translational changes. Further, using a penalized logistic regression model, we identified the combined methylation levels of SPG20, UNC45A and COL9A3 and also, the combined expression levels of ID4 and MYRF to be good markers capable of discriminating childhood from adult inflammatory phenotypes. We thus propose the hypothesis that an epigenetically controlled, altered transcriptional program may drive an impaired oligodendrocyte differentiation and aberrant immune activation in X-ALD patients. These results shed light into disease pathomechanisms and uncover putative biomarkers of interest for prognosis and phenotypic stratification.

14.
Clin Neurophysiol ; 129(3): 507-515, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29367165

RESUMO

OBJECTIVE: Patients with adrenomyeloneuropathy may have dysfunctions of visual, auditory, motor and somatosensory pathways. We thought on examining the nociceptive pathways by means of laser evoked potentials (LEPs), to obtain additional information on the pathophysiology of this condition. METHODS: In 13 adrenomyeloneuropathic patients we examined LEPs to leg, arm and face stimulation. Normative data were obtained from 10 healthy subjects examined in the same experimental conditions. We also examined brainstem auditory evoked potentials (BAEPs), pattern reversal full-field visual evoked potentials (VEPs), motor evoked potentials (MEPs) and somatosensory evoked potentials (SEPs). RESULTS: Upper and lower limb MEPs and SEPs, as well as BAEPs, were abnormal in all patients, while VEPs were abnormal in 3 of them (23.1%). LEPs revealed abnormalities to stimulation of the face in 4 patients (30.7%), the forearm in 4 patients (30.7%) and the leg in 10 patients (76.9%). CONCLUSIONS: The pathologic process of adrenomyeloneuropathy is characterized by a preferential involvement of auditory, motor and somatosensory tracts and less severely of the visual and nociceptive pathways. This non-inflammatory distal axonopathy preferably damages large myelinated spinal tracts but there is also partial involvement of small myelinated fibres. SIGNIFICANCE: LEPs studies can provide relevant information about afferent pain pathways involvement in adrenomyeloneuropathic patients.

15.
Clin Pharmacol Ther ; 103(4): 712-721, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28736931

RESUMO

Individuals with type 2 diabetes (T2D) and dyslipidemia are at an increased risk of cardiovascular disease. Fibrates are a class of drugs prescribed to treat dyslipidemia, but variation in response has been observed. To evaluate common and rare genetic variants that impact lipid responses to fenofibrate in statin-treated patients with T2D, we examined lipid changes in response to fenofibrate therapy using a genomewide association study (GWAS). Associations were followed-up using gene expression studies in mice. Common variants in SMAD3 and IPO11 were marginally associated with lipid changes in black subjects (P < 5 × 10-6 ). Rare variant and gene expression changes were assessed using a false discovery rate approach. AKR7A3 and HSD17B13 were associated with lipid changes in white subjects (q < 0.2). Mice fed fenofibrate displayed reductions in Hsd17b13 gene expression (q < 0.1). Associations of variants in SMAD3, IPO11, and HSD17B13, with gene expression changes in mice indicate that transforming growth factor-beta (TGF-ß) and NRF2 signaling pathways may influence fenofibrate effects on dyslipidemia in patients with T2D.

16.
Brain Pathol ; 28(5): 611-630, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29027761

RESUMO

Pelizaeus-Merzbacher disease (PMD) is a fatal hypomyelinating disorder characterized by early impairment of motor development, nystagmus, choreoathetotic movements, ataxia and progressive spasticity. PMD is caused by variations in the proteolipid protein gene PLP1, which encodes the two major myelin proteins of the central nervous system, PLP and its spliced isoform DM20, in oligodendrocytes. Large duplications including the entire PLP1 gene are the most frequent causative mutation leading to the classical form of PMD. The Plp1 overexpressing mouse model (PLP-tg66/66 ) develops a phenotype very similar to human PMD, with early and severe motor dysfunction and a dramatic decrease in lifespan. The sequence of cellular events that cause neurodegeneration and ultimately death is poorly understood. In this work, we analyzed patient-derived fibroblasts and spinal cords of the PLP-tg66/66 mouse model, and identified redox imbalance, with altered antioxidant defense and oxidative damage to several enzymes involved in ATP production, such as glycolytic enzymes, creatine kinase and mitochondrial proteins from the Krebs cycle and oxidative phosphorylation. We also evidenced malfunction of the mitochondria compartment with increased ROS production and depolarization in PMD patient's fibroblasts, which was prevented by the antioxidant N-acetyl-cysteine. Finally, we uncovered an impairment of mitochondrial dynamics in patient's fibroblasts which may help explain the ultrastructural abnormalities of mitochondria morphology detected in spinal cords from PLP-tg66/66 mice. Altogether, these results underscore the link between redox and metabolic homeostasis in myelin diseases, provide insight into the pathophysiology of PMD, and may bear implications for tailored pharmacological intervention.

17.
Am J Hum Genet ; 101(6): 965-976, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220678

RESUMO

Zellweger spectrum disorders (ZSDs) are autosomal-recessive disorders that are caused by defects in peroxisome biogenesis due to bi-allelic mutations in any of 13 different PEX genes. Here, we identified seven unrelated individuals affected with an apparent dominant ZSD in whom a heterozygous mutant PEX6 allele (c.2578C>T [p.Arg860Trp]) was overrepresented due to allelic expression imbalance (AEI). We demonstrated that AEI of PEX6 is a common phenomenon and is correlated with heterozygosity for a frequent variant in the 3' untranslated region (UTR) of the mutant allele, which disrupts the most distal of two polyadenylation sites. Asymptomatic parents, who were heterozygous for PEX c.2578C>T, did not show AEI and were homozygous for the 3' UTR variant. Overexpression models confirmed that the overrepresentation of the pathogenic PEX6 c.2578T variant compared to wild-type PEX6 c.2578C results in a peroxisome biogenesis defect and thus constitutes the cause of disease in the affected individuals. AEI promoting the overrepresentation of a mutant allele might also play a role in other autosomal-recessive disorders, in which only one heterozygous pathogenic variant is identified.


Assuntos
Regiões 3' não Traduzidas/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Desequilíbrio Alélico/genética , Síndrome de Zellweger/genética , Alelos , Células Cultivadas , Feminino , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença , Humanos , Masculino , Peroxissomos/genética , Peroxissomos/patologia , Sequenciamento Completo do Exoma
18.
Am J Hum Genet ; 101(5): 768-788, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100089

RESUMO

Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Deficiência Intelectual/genética , Mutação/genética , Animais , Encéfalo/patologia , Linhagem Celular , Exoma/genética , Feminino , Ácido Glutâmico/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Fosforilação/genética , Transdução de Sinais/genética
19.
Aging Cell ; 16(6): 1404-1413, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28984064

RESUMO

Sirtuin 2 (SIRT2) is a member of a family of NAD+ -dependent histone deacetylases (HDAC) that play diverse roles in cellular metabolism and especially for aging process. SIRT2 is located in the nucleus, cytoplasm, and mitochondria, is highly expressed in the central nervous system (CNS), and has been reported to regulate a variety of processes including oxidative stress, genome integrity, and myelination. However, little is known about the role of SIRT2 in the nervous system specifically during aging. Here, we show that middle-aged, 13-month-old mice lacking SIRT2 exhibit locomotor dysfunction due to axonal degeneration, which was not present in young SIRT2 mice. In addition, these Sirt2-/- mice exhibit mitochondrial depletion resulting in energy failure, and redox dyshomeostasis. Our results provide a novel link between SIRT2 and physiological aging impacting the axonal compartment of the central nervous system, while supporting a major role for SIRT2 in orchestrating its metabolic regulation. This underscores the value of SIRT2 as a therapeutic target in the most prevalent neurodegenerative diseases that undergo with axonal degeneration associated with redox and energetic dyshomeostasis.


Assuntos
Axônios/metabolismo , Locomoção/fisiologia , Sirtuína 2/deficiência , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Axônios/patologia , Cognição/fisiologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Metabolismo Energético , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Oxirredução , Sirtuína 2/metabolismo
20.
Acta Neuropathol ; 133(2): 283-301, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28004277

RESUMO

The activation of the highly conserved unfolded protein response (UPR) is prominent in the pathogenesis of the most prevalent neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), which are classically characterized by an accumulation of aggregated or misfolded proteins. This activation is orchestrated by three endoplasmic reticulum (ER) stress sensors: PERK, ATF6 and IRE1. These sensors transduce signals that induce the expression of the UPR gene programme. Here, we first identified an early activator of the UPR and investigated the role of a chronically activated UPR in the pathogenesis of X-linked adrenoleukodystrophy (X-ALD), a neurometabolic disorder that is caused by ABCD1 malfunction; ABCD1 transports very long-chain fatty acids (VLCFA) into peroxisomes. The disease manifests as inflammatory demyelination in the brain or and/or degeneration of corticospinal tracts, thereby resulting in spastic paraplegia, with the accumulation of intracellular VLCFA instead of protein aggregates. Using X-ALD mouse model (Abcd1 - and Abcd1 - /Abcd2 -/- mice) and X-ALD patient's fibroblasts and brain samples, we discovered an early engagement of the UPR. The response was characterized by the activation of the PERK and ATF6 pathways, but not the IRE1 pathway, showing a difference from the models of AD, PD or ALS. Inhibition of PERK leads to the disruption of homeostasis and increased apoptosis during ER stress induced in X-ALD fibroblasts. Redox imbalance appears to be the mechanism that initiates ER stress in X-ALD. Most importantly, we demonstrated that the bile acid tauroursodeoxycholate (TUDCA) abolishes UPR activation, which results in improvement of axonal degeneration and its associated locomotor impairment in Abcd1 - /Abcd2 -/- mice. Altogether, our preclinical data provide evidence for establishing the UPR as a key drug target in the pathogenesis cascade. Our study also highlights the potential role of TUDCA as a treatment for X-ALD and other axonopathies in which similar molecular mediators are implicated.


Assuntos
Adrenoleucodistrofia/fisiopatologia , Axônios/efeitos dos fármacos , Degeneração Neural/fisiopatologia , Ácido Tauroquenodesoxicólico/farmacologia , Resposta a Proteínas não Dobradas/fisiologia , Animais , Axônios/patologia , Humanos , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA