Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 1235, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718757

RESUMO

Non-genetic factors are crucial in the pathogenesis of type 1 diabetes (T1D), a disease caused by autoimmunity against insulin-producing ß-cells. Exposure to medications in the prenatal period may influence the immune system maturation, thus altering self-tolerance. Prenatal administration of betamethasone -a synthetic glucocorticoid given to women at risk of preterm delivery- may affect the development of T1D. It has been previously demonstrated that prenatal betamethasone administration protects offspring from T1D development in nonobese diabetic (NOD) mice. The direct effect of betamethasone on the immature and mature immune system of NOD mice and on target ß-cells is analysed in this paper. In vitro, betamethasone decreased lymphocyte viability and induced maturation-resistant dendritic cells, which in turn impaired γδ T cell proliferation and decreased IL-17 production. Prenatal betamethasone exposure caused thymus hypotrophy in newborn mice as well as alterations in immune cells subsets. Furthermore, betamethasone decreased ß-cell growth, reduced C-peptide secretion and altered the expression of genes related to autoimmunity, metabolism and islet mass in T1D target tissue. These results support the protection against T1D in the betamethasone-treated offspring and demonstrate that this drug alters the developing immune system and ß-cells. Understanding how betamethasone generates self-tolerance could have potential clinical relevance in T1D.

2.
J Clin Invest ; 128(8): 3460-3474, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29851415

RESUMO

In type 1 diabetes, cytotoxic CD8+ T cells with specificity for ß cell autoantigens are found in the pancreatic islets, where they are implicated in the destruction of insulin-secreting ß cells. In contrast, the disease relevance of ß cell-reactive CD8+ T cells that are detectable in the circulation, and their relationship to ß cell function, are not known. Here, we tracked multiple, circulating ß cell-reactive CD8+ T cell subsets and measured ß cell function longitudinally for 2 years, starting immediately after diagnosis of type 1 diabetes. We found that change in ß cell-specific effector memory CD8+ T cells expressing CD57 was positively correlated with C-peptide change in subjects below 12 years of age. Autoreactive CD57+ effector memory CD8+ T cells bore the signature of enhanced effector function (higher expression of granzyme B, killer-specific protein of 37 kDa, and CD16, and reduced expression of CD28) compared with their CD57- counterparts, and network association modeling indicated that the dynamics of ß cell-reactive CD57+ effector memory CD8+ T cell subsets were strongly linked. Thus, coordinated changes in circulating ß cell-specific CD8+ T cells within the CD57+ effector memory subset calibrate to functional insulin reserve in type 1 diabetes, providing a tool for immune monitoring and a mechanism-based target for immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Memória Imunológica , Células Secretoras de Insulina/imunologia , Adulto , Linfócitos T CD8-Positivos/patologia , Criança , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/terapia , Feminino , Humanos , Células Secretoras de Insulina/patologia , Masculino
3.
Front Immunol ; 9: 253, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29491866

RESUMO

Type 1 diabetes (T1D) is a metabolic disease caused by the autoimmune destruction of insulin-producing ß-cells. With its incidence increasing worldwide, to find a safe approach to permanently cease autoimmunity and allow ß-cell recovery has become vital. Relying on the inherent ability of apoptotic cells to induce immunological tolerance, we demonstrated that liposomes mimicking apoptotic ß-cells arrested autoimmunity to ß-cells and prevented experimental T1D through tolerogenic dendritic cell (DC) generation. These liposomes contained phosphatidylserine (PS)-the main signal of the apoptotic cell membrane-and ß-cell autoantigens. To move toward a clinical application, PS-liposomes with optimum size and composition for phagocytosis were loaded with human insulin peptides and tested on DCs from patients with T1D and control age-related subjects. PS accelerated phagocytosis of liposomes with a dynamic typical of apoptotic cell clearance, preserving DCs viability. After PS-liposomes phagocytosis, the expression pattern of molecules involved in efferocytosis, antigen presentation, immunoregulation, and activation in DCs concurred with a tolerogenic functionality, both in patients and control subjects. Furthermore, DCs exposed to PS-liposomes displayed decreased ability to stimulate autologous T cell proliferation. Moreover, transcriptional changes in DCs from patients with T1D after PS-liposomes phagocytosis pointed to an immunoregulatory prolife. Bioinformatics analysis showed 233 differentially expressed genes. Genes involved in antigen presentation were downregulated, whereas genes pertaining to tolerogenic/anti-inflammatory pathways were mostly upregulated. In conclusion, PS-liposomes phagocytosis mimics efferocytosis and leads to phenotypic and functional changes in human DCs, which are accountable for tolerance induction. The herein reported results reinforce the potential of this novel immunotherapy to re-establish immunological tolerance, opening the door to new therapeutic approaches in the field of autoimmunity.


Assuntos
Apoptose/imunologia , Células Dendríticas/imunologia , Diabetes Mellitus Tipo 1/imunologia , Tolerância Imunológica/imunologia , Fosfatidilserinas/imunologia , Adolescente , Adulto , Autoantígenos/imunologia , Células Cultivadas , Feminino , Humanos , Imunoterapia/métodos , Lipossomos , Masculino , Pessoa de Meia-Idade , Mimetismo Molecular/imunologia , Fagocitose , Adulto Jovem
4.
Biochem Biophys Rep ; 12: 198-205, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29090282

RESUMO

The pathophysiology of inflammatory bowel disease (IBD) reflects a balance between mucosal injury and reparative mechanisms. Some regenerating gene (Reg) family members have been reported to be expressed in Crohn's disease (CD) and ulcerative colitis (UC) and to be involved as proliferative mucosal factors in IBD. However, expression of all REG family genes in IBD is still unclear. Here, we analyzed expression of all REG family genes (REG Iα, REG Iß, REG III, HIP/PAP, and REG IV) in biopsy specimens of UC and CD by real-time RT-PCR. REG Iα, REG Iß, and REG IV genes were overexpressed in CD samples. REG IV gene was also overexpressed in UC samples. We further analyzed the expression mechanisms of REG Iα, REG Iß, and REG IV genes in human colon cells. The expression of REG Iα was significantly induced by IL-6 or IL-22, and REG Iß was induced by IL-22. Deletion analyses revealed that three regions (- 220 to - 211, - 179 to - 156, and - 146 to - 130) in REG Iα and the region (- 274 to- 260) in REG Iß promoter were responsible for the activation by IL-22/IL-6. The promoters contain consensus transcription factor binding sequences for MZF1, RTEF1/TEAD4, and STAT3 in REG Iα, and HLTF/FOXN2F in REG Iß, respectively. The introduction of siRNAs for MZF1, RTEF1/TEAD4, STAT3, and HLTF/FOXN2F abolished the transcription of REG Iα and REG Iß. The gene activation mechanisms of REG Iα/REG Iß may play a role in colon mucosal regeneration in IBD.

5.
Sci Transl Med ; 9(402)2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794283

RESUMO

Immunotherapy using short immunogenic peptides of disease-related autoantigens restores immune tolerance in preclinical disease models. We studied safety and mechanistic effects of injecting human leukocyte antigen-DR4(DRB1*0401)-restricted immunodominant proinsulin peptide intradermally every 2 or 4 weeks for 6 months in newly diagnosed type 1 diabetes patients. Treatment was well tolerated with no systemic or local hypersensitivity. Placebo subjects showed a significant decline in stimulated C-peptide (measuring insulin reserve) at 3, 6, 9, and 12 months versus baseline, whereas no significant change was seen in the 4-weekly peptide group at these time points or the 2-weekly group at 3, 6, and 9 months. The placebo group's daily insulin use increased by 50% over 12 months but remained unchanged in the intervention groups. C-peptide retention in treated subjects was associated with proinsulin-stimulated interleukin-10 production, increased FoxP3 expression by regulatory T cells, low baseline levels of activated ß cell-specific CD8 T cells, and favorable ß cell stress markers (proinsulin/C-peptide ratio). Thus, proinsulin peptide immunotherapy is safe, does not accelerate decline in ß cell function, and is associated with antigen-specific and nonspecific immune modulation.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Imunoterapia/métodos , Peptídeos/uso terapêutico , Proinsulina/uso terapêutico , Adolescente , Adulto , Autoanticorpos/imunologia , Autoantígenos/imunologia , Peptídeo C/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Método Duplo-Cego , Feminino , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Linfócitos T Reguladores/metabolismo , Adulto Jovem
6.
Nanomedicine (Lond) ; 12(11): 1231-1242, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28593827

RESUMO

AIM: Based on the ability of apoptosis to induce immunological tolerance, liposomes were generated mimicking apoptotic cells, and they arrest autoimmunity in Type 1 diabetes. Our aim was to validate the immunotherapy in other autoimmune disease: multiple sclerosis. MATERIALS & METHODS: Phosphatidylserine-rich liposomes were loaded with disease-specific autoantigen. Therapeutic capability of liposomes was assessed in vitro and in vivo. RESULTS: Liposomes induced a tolerogenic phenotype in dendritic cells, and arrested autoimmunity, thus decreasing the incidence, delaying the onset and reducing the severity of experimental disease, correlating with an increase in a probably regulatory CD25+ FoxP3- CD4+ T-cell subset. CONCLUSION: This is the first work that confirms phosphatidylserine-liposomes as a powerful tool to arrest multiple sclerosis, demonstrating its relevance for clinical application.


Assuntos
Autoantígenos/administração & dosagem , Imunoterapia/métodos , Lipossomos/química , Esclerose Múltipla/terapia , Glicoproteína Mielina-Oligodendrócito/administração & dosagem , Peptídeos/administração & dosagem , Fosfatidilserinas/química , Animais , Autoantígenos/imunologia , Autoantígenos/uso terapêutico , Feminino , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Glicoproteína Mielina-Oligodendrócito/uso terapêutico , Peptídeos/imunologia , Peptídeos/uso terapêutico , Linfócitos T Reguladores/imunologia
7.
Curr Pharm Des ; 23(18): 2623-2643, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28201972

RESUMO

Cell-based tolerogenic therapy is a promising approach for the treatment of autoimmune diseases and transplant rejection. Regulatory T cells and tolerogenic dendritic cells have been particularly explored in the treatment of various autoimmune disorders in experimental models of disease. Although some of these cells have already been tested in a limited number of clinical trials, there is still a need for preclinical research on tolerogenic cells in animal models of autoimmunity. This review will focus on the relevance of data obtained from studies in experimental animal models for the use of tolerogenic cell-based therapy in humans. Also, perspectives for further improvement of tolerogenic cell preparation towards enhanced suppressive activity and stability of the cells will be discussed.


Assuntos
Artrite Reumatoide/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Diabetes Mellitus Tipo 1/terapia , Modelos Animais de Doenças , Esclerose Múltipla/terapia , Animais , Artrite Reumatoide/imunologia , Autoimunidade/efeitos dos fármacos , Autoimunidade/imunologia , Diabetes Mellitus Tipo 1/imunologia , Humanos , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/imunologia , Imunossupressores/administração & dosagem , Esclerose Múltipla/imunologia , Compostos Orgânicos/administração & dosagem , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
8.
N Biotechnol ; 35: 19-29, 2017 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27810336

RESUMO

Umbilical cord blood (UCB) transplantation is associated with long periods of aplastic anaemia. This undesirable situation is due to the low cell dose available per unit of UCB and the immaturity of its progenitors. To overcome this, we present a cell culture strategy aimed at the expansion of the CD34+ population and the generation of granulocyte lineage-committed progenitors. Two culture products were produced after either 6 or 14days of in vitro expansion, and their characteristics compared to non-expanded UCB CD34+ controls in terms of phenotype, colony-forming activity and multilineage repopulation potential in NOD-scid IL2Rγnull mice. Both expanded cell products maintained rapid SCID repopulation activity similar to the non-expanded control, but 14-day cultured cells showed impaired long term SCID repopulation activity. The process was successfully scaled up to clinically relevant doses of 89×106 CD34+ cells committed to the granulocytic lineage and 3.9×109 neutrophil precursors in different maturation stages. Cell yields and biological properties presented by the cell product obtained after 14days in culture were superior and therefore this is proposed as the preferred production setup in a new type of dual transplant strategy to reduce aplastic periods, producing a transient repopulation before the definitive engraftment of the non-cultured UCB unit. Importantly, human telomerase reverse transcriptase activity was undetectable, c-myc expression levels were low and no genetic abnormalities were found, as determined by G-banding karyotype, further confirming the safety of the expanded product.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Sangue Fetal/citologia , Anemia Aplástica/sangue , Anemia Aplástica/etiologia , Anemia Aplástica/prevenção & controle , Animais , Antígenos CD34/sangue , Biotecnologia , Diferenciação Celular , Linhagem da Célula , Ensaio de Unidades Formadoras de Colônias , Transplante de Células-Tronco de Sangue do Cordão Umbilical/efeitos adversos , Feminino , Sangue Fetal/imunologia , Facilitação Imunológica de Enxerto/métodos , Granulócitos/citologia , Humanos , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neutrófilos/citologia
9.
Mol Cell Endocrinol ; 426: 101-12, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-26911933

RESUMO

The transmembrane glycoprotein CD26 or dipeptidyl peptidase IV (DPPIV) is a multifunctional protein. In immune system, CD26 plays a role in T-cell function and is also involved in thymic maturation and emigration patterns. In preclinical studies, treatment with DPPIV inhibitors reduces insulitis and delays or even reverses the new -onset of type 1 diabetes (T1D) in non-obese diabetic (NOD) mice. However, the specific mechanisms involved in these effects remain unknown. The aim of the present study was to investigate how DPPIV inhibition modifies the expression of genes in the thymus of NOD mice by microarray analysis. Changes in the gene expression of ß-cell autoantigens and Aire in thymic epithelial cells (TECs) were also evaluated by using qRT-PCR. A DPPIV inhibitor, MK626, was orally administered in the diet for 4 and 6 weeks starting at 6-8 weeks of age. Thymic glands from treated and control mice were obtained for each study checkpoint. Thymus transcriptome analysis revealed that 58 genes were significantly over-expressed in MK626-treated mice after 6 weeks of treatment. Changes in gene expression in the thymus were confined mainly to the immune system, including innate immunity, chemotaxis, antigen presentation and immunoregulation. Most of the genes are implicated in central tolerance mechanisms through several pathways. No differences were observed in the expression of Aire and ß-cell autoantigens in TECs. In the current study, we demonstrate that treatment with the DPPIV inhibitor MK626 in NOD mice alters the expression of the immune response-related genes in the thymus, especially those related to immunological central tolerance, and may contribute to the prevention of T1D.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Indinavir/farmacologia , Animais , Apresentação do Antígeno/genética , Feminino , Regulação da Expressão Gênica/imunologia , Redes Reguladoras de Genes , Imunomodulação/genética , Camundongos Endogâmicos NOD , Timo/efeitos dos fármacos , Timo/metabolismo , Transcriptoma
10.
Eur J Immunol ; 46(3): 593-608, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26639224

RESUMO

Autoreactive B lymphocytes play a key role as APCs in diaebetogenesis. However, it remains unclear whether B-cell tolerance is compromised in NOD mice. Here, we describe a new B lymphocyte transgenic NOD mouse model, the 116C-NOD mouse, where the transgenes derive from an islet-infiltrating B lymphocyte of a (8.3-NODxNOR) F1 mouse. The 116C-NOD mouse produces clonal B lymphocytes with pancreatic islet beta cell specificity. The incidence of T1D in 116C-NOD mice is decreased in both genders when compared with NOD mice. Moreover, several immune selection mechanisms (including clonal deletion and anergy) acting on the development, phenotype, and function of autoreactive B lymphocytes during T1D development have been identified in the 116C-NOD mouse. Surprisingly, a more accurate analysis revealed that, despite their anergic phenotype, 116C B cells express some costimulatory molecules after activation, and induce a T-cell shift toward a Th17 phenotype. Furthermore, this shift on T lymphocytes seems to occur not only when both T and B cells contact, but also when helper T (Th) lineage is established. The 116C-NOD mouse model could be useful to elucidate the mechanisms involved in the generation of Th-cell lineages.


Assuntos
Linfócitos B/imunologia , Anergia Clonal , Diabetes Mellitus Tipo 1/imunologia , Modelos Animais de Doenças , Tolerância Imunológica/genética , Ativação Linfocitária , Células Th17/imunologia , Animais , Deleção Clonal , Citocinas/genética , Citocinas/imunologia , Tolerância Imunológica/imunologia , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Fenótipo , Baço/anatomia & histologia , Baço/citologia , Baço/imunologia , Transgenes
11.
PLoS One ; 10(11): e0142186, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26555789

RESUMO

CD26 is a T cell activation marker consisting in a type II transmembrane glycoprotein with dipeptidyl peptidase IV (DPPIV) activity in its extracellular domain. It has been described that DPPIV inhibition delays the onset of type 1 diabetes and reverses the disease in non-obese diabetic (NOD) mice. The aim of the present study was to assess the effect of MK626, a DPPIV inhibitor, in type 1 diabetes incidence and in T lymphocyte subsets at central and peripheral compartments. Pre-diabetic NOD mice were treated with MK626. Diabetes incidence, insulitis score, and phenotyping of T lymphocytes in the thymus, spleen and pancreatic lymph nodes were determined after 4 and 6 weeks of treatment, as well as alterations in the expression of genes encoding ß-cell autoantigens in the islets. The effect of MK626 was also assessed in two in vitro assays to determine proliferative and immunosuppressive effects. Results show that MK626 treatment reduces type 1 diabetes incidence and after 6 weeks of treatment reduces insulitis. No differences were observed in the percentage of T lymphocyte subsets from central and peripheral compartments between treated and control mice. MK626 increased the expression of CD26 in CD8+ T effector memory (TEM) from spleen and pancreatic lymph nodes and in CD8+ T cells from islet infiltration. CD8+TEM cells showed an increased proliferation rate and cytokine secretion in the presence of MK626. Moreover, the combination of CD8+ TEM cells and MK626 induces an immunosuppressive response. In conclusion, treatment with the DPPIV inhibitor MK626 prevents experimental type 1 diabetes in association to increase expression of CD26 in the CD8+ TEM lymphocyte subset. In vitro assays suggest an immunoregulatory role of CD8+ TEM cells that may be involved in the protection against autoimmunity to ß pancreatic islets associated to DPPIV inhibitor treatment.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Diabetes Mellitus Tipo 1/prevenção & controle , Dipeptidil Peptidase 4/efeitos dos fármacos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Fosfato de Sitagliptina/análogos & derivados , Animais , Autoantígenos/genética , Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos NOD , Fosfato de Sitagliptina/farmacologia , Fator de Crescimento Transformador beta/sangue
15.
PLoS One ; 10(6): e0127057, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039878

RESUMO

INTRODUCTION: The development of new therapies to induce self-tolerance has been an important medical health challenge in type 1 diabetes. An ideal immunotherapy should inhibit the autoimmune attack, avoid systemic side effects and allow ß-cell regeneration. Based on the immunomodulatory effects of apoptosis, we hypothesized that apoptotic mimicry can help to restore tolerance lost in autoimmune diabetes. OBJECTIVE: To generate a synthetic antigen-specific immunotherapy based on apoptosis features to specifically reestablish tolerance to ß-cells in type 1 diabetes. METHODS: A central event on the surface of apoptotic cells is the exposure of phosphatidylserine, which provides the main signal for efferocytosis. Therefore, phosphatidylserine-liposomes loaded with insulin peptides were generated to simulate apoptotic cells recognition by antigen presenting cells. The effect of antigen-specific phosphatidylserine-liposomes in the reestablishment of peripheral tolerance was assessed in NOD mice, the spontaneous model of autoimmune diabetes. MHC class II-peptide tetramers were used to analyze the T cell specific response after treatment with phosphatidylserine-liposomes loaded with peptides. RESULTS: We have shown that phosphatidylserine-liposomes loaded with insulin peptides induce tolerogenic dendritic cells and impair autoreactive T cell proliferation. When administered to NOD mice, liposome signal was detected in the pancreas and draining lymph nodes. This immunotherapy arrests the autoimmune aggression, reduces the severity of insulitis and prevents type 1 diabetes by apoptotic mimicry. MHC class II tetramer analysis showed that peptide-loaded phosphatidylserine-liposomes expand antigen-specific CD4+ T cells in vivo. The administration of phosphatidylserine-free liposomes emphasizes the importance of phosphatidylserine in the modulation of antigen-specific CD4+ T cell expansion. CONCLUSIONS: We conclude that this innovative immunotherapy based on the use of liposomes constitutes a promising strategy for autoimmune diseases.


Assuntos
Autoantígenos/imunologia , Autoimunidade , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/imunologia , Fosfatidilserinas/uso terapêutico , Animais , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular , Citocinas/metabolismo , Células Dendríticas/imunologia , Imunoterapia , Injeções Intraperitoneais , Insulina/uso terapêutico , Lipossomos , Camundongos Endogâmicos NOD , Fenótipo
16.
Apoptosis ; 20(3): 263-72, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25604067

RESUMO

Type 1 diabetes (T1D) is a metabolic disease that results from the autoimmune attack against insulin-producing ß-cells in the pancreatic islets of Langerhans. Currently, there is no treatment to restore endogenous insulin secretion in patients with autoimmune diabetes. In the last years, the development of new therapies to induce long-term tolerance has been an important medical health challenge. Apoptosis is a physiological mechanism that contributes to the maintenance of immune tolerance. Apoptotic cells are a source of autoantigens that induce tolerance after their removal by antigen presenting cells (APCs) through a process called efferocytosis. Efferocytosis will not cause maturation in dendritic cells, one of the most powerful APCs, and this process could induce tolerance rather than autoimmunity. However, failure of this mechanism due to an increase in the rate of ß-cells apoptosis and/or defects in efferocytosis results in activation of APCs, contributing to inflammation and to the loss of tolerance to self. In fact, T1D and other autoimmune diseases are associated to enhanced apoptosis of target cells and defective apoptotic cell clearance. Although further research is needed, the clinical relevance of immunotherapies based on apoptosis could prove to be very important, as it has translational potential in situations that require the reestablishment of immunological tolerance, such as autoimmune diseases. This review summarizes the effects of apoptosis of ß-cells towards autoimmunity or tolerance and its application in the field of emerging immunotherapies.


Assuntos
Apoptose/imunologia , Autoimunidade , Células Dendríticas/imunologia , Diabetes Mellitus Tipo 1/imunologia , Tolerância Imunológica , Células Secretoras de Insulina/imunologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Autoantígenos/genética , Autoantígenos/imunologia , Citocinas/biossíntese , Citocinas/imunologia , Células Dendríticas/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/terapia , Regulação da Expressão Gênica , Humanos , Imunoterapia , Células Secretoras de Insulina/patologia , Camundongos , Linfócitos T/imunologia , Linfócitos T/patologia
17.
PLoS One ; 8(5): e63296, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691013

RESUMO

INTRODUCTION: Efferocytosis is a crucial process by which apoptotic cells are cleared by phagocytes, maintaining immune tolerance to self in the absence of inflammation. Peripheral tolerance, lost in autoimmune processes, may be restored by the administration of autologous dendritic cells loaded with islet apoptotic cells in experimental type 1 diabetes. OBJECTIVE: To evaluate tolerogenic properties in dendritic cells induced by the clearance of apoptotic islet cells, thus explaining the re-establishment of tolerance in a context of autoimmunity. METHODS: Bone marrow derived dendritic cells from non-obese diabetic mice, a model of autoimmune diabetes, were generated and pulsed with islet apoptotic cells. The ability of these cells to induce autologous T cell proliferation and to suppress mature dendritic cell function was assessed, together with cytokine production. Microarray experiments were performed using dendritic cells to identify differentially expressed genes after efferocytosis. RESULTS: Molecular and functional changes in dendritic cells after the capture of apoptotic cells were observed. 1) Impaired ability of dendritic cells to stimulate autologous T cell proliferation after the capture of apoptotic cells even after proinflammatory stimuli, with a cytokine profile typical for immature dendritic cells. 2) Suppressive ability of mature dendritic cell function. 3) Microarray-based gene expression profiling of dendritic cells showed differential expression of genes involved in antigen processing and presentation after efferocytosis. 4) Prostaglandin E2 increased production was responsible for immunosuppressive mechanism of dendritic cells after the capture of apoptotic cells. CONCLUSIONS: The tolerogenic behaviour of dendritic cells after islet cells efferocytosis points to a mechanism of silencing potential autoreactive T cells in the microenvironment of autoimmunity. Our results suggest that dendritic cells may be programmed to induce specific immune tolerance using apoptotic cells; this is a viable strategy for a variety of autoimmune diseases.


Assuntos
Autoimunidade , Células Dendríticas/metabolismo , Dinoprostona/biossíntese , Fagocitose , Animais , Proliferação de Células , Células Dendríticas/citologia , Células Dendríticas/imunologia , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos NOD , Linfócitos T Reguladores/citologia
18.
ISRN Endocrinol ; 2013: 346987, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555060

RESUMO

Type 1 diabetes is a metabolic disease caused by autoimmunity towards ß -cells. Different strategies have been developed to restore ß -cell function and to reestablish immune tolerance to prevent and cure the disease. Currently, there is no effective treatment strategy to restore endogenous insulin secretion in patients with type 1 diabetes. This study aims to restore insulin secretion in diabetic mice with experimental antigen-specific immunotherapy alone or in combination with rapamycin, a compound well known for its immunomodulatory effect. Nonobese diabetic (NOD) mice develop spontaneous type 1 diabetes after 12 weeks of age. Autologous tolerogenic dendritic cells-consisting in dendritic cells pulsed with islet apoptotic cells-were administered to diabetic NOD mice alone or in combination with rapamycin. The ability of this therapy to revert type 1 diabetes was determined by assessing the insulitis score and by measuring both blood glucose levels and C-peptide concentration. Our findings indicate that tolerogenic dendritic cells alone or in combination with rapamycin do not ameliorate diabetes in NOD mice. These results suggest that alternative strategies may be considered for the cure of type 1 diabetes.

19.
J Clin Gastroenterol ; 47(4): 308-13, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23388848

RESUMO

Celiac disease (CD) is an autoimmune disorder, which damages the small intestine and is caused by ingestion of gluten in genetically susceptible individuals. The only known effective treatment is a lifelong gluten-free diet. Genetic risk factors have been identified and nearly all patients are HLA-DQ2 and/or HLA-DQ8 positive. Specific autoantibodies, IgA antitissue transglutaminase-2, antiendomysium, and antideaminated forms of gliadin peptide antibodies, are widely used as diagnostic aids in celiac patients. However, the discovery of new biomarkers may help in the diagnosis and follow-up of the disease. Recently, the molecule REG Iα, involved in tissue regeneration, has been proposed as a new biomarker of CD. REG Iα expression is increased in the target tissue and in the sera of celiac patients during damage and inflammation, decreasing after gluten-free diet. In this article we review the main biomarkers for diagnosis and monitoring of CD, focusing on the immune response-related mechanisms.


Assuntos
Autoanticorpos/sangue , Doença Celíaca/diagnóstico , Antígenos HLA-DQ/genética , Litostatina/sangue , Animais , Autoimunidade , Biomarcadores/sangue , Doença Celíaca/sangue , Doença Celíaca/dietoterapia , Doença Celíaca/genética , Doença Celíaca/imunologia , Dieta Livre de Glúten , Marcadores Genéticos , Humanos , Valor Preditivo dos Testes , Prognóstico , Índice de Gravidade de Doença
20.
Biomarkers ; 18(2): 178-80, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23312007

RESUMO

Celiac disease is an autoimmune disorder induced by gluten in genetically predisposed people. The discovery of new biomarkers may help in the diagnosis and follow-up of celiac patients. Regenerating islet-derived 1 alpha (REGIα)--a biomarker related to tissue regeneration--is increased in serum at the onset of the disease, decreasing after gluten-free diet (GFD). As REGIα is a 18 kDa soluble glycoprotein, it may be detected in urine samples, increasing in celiac patients. We have determined REGIα levels by ELISA. No differences were found among patients (onset or after GFD) and controls and no correlation exists among REGIα in sera and urine.


Assuntos
Doença Celíaca/sangue , Doença Celíaca/urina , Litostatina/sangue , Litostatina/urina , Adolescente , Adulto , Biomarcadores/sangue , Biomarcadores/urina , Estudos de Casos e Controles , Doença Celíaca/diagnóstico , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA