Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 32(2): e1904433, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31782554

RESUMO

Metal-free polymer photocatalysts have shown great promise for photocatalytic H2 O2 production via two-electron reduction of molecular O2 . The other half-reaction, which is the two-electron oxidation of water, still remains elusive toward H2 O2 production. However, enabling this water oxidation pathway is critically important to improve the yield and maximize atom utilization efficiency. It is shown that introducing acetylene (CC) or diacetylene (CCCC) moieties into covalent triazine frameworks (CTFs) can remarkably promote photocatalytic H2 O2 production. This enhancement is inherent to the incorporated carbon-carbon triple bonds which are essential in modulating the electronic structures of CTFs and suppressing charge recombinations. Furthermore, the acetylene and diacetylene moieties can significantly reduce the energy associated with OH* formation and thus enable a new two-electron oxidation pathway toward H2 O2 production. The study unveils an important reaction pathway toward photocatalytic H2 O2 production, reflecting that precise control over the chemical structures of polymer photocatalysts is vital to achieve efficient solar-to-chemical energy conversion.

2.
Nat Commun ; 10(1): 4849, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31649237

RESUMO

Achieving active and stable oxygen evolution reaction (OER) in acid media based on single-atom catalysts is highly promising for cost-effective and sustainable energy supply in proton electrolyte membrane electrolyzers. Here, we report an atomically dispersed Ru1-N4 site anchored on nitrogen-carbon support (Ru-N-C) as an efficient and durable electrocatalyst for acidic OER. The single-atom Ru-N-C catalyst delivers an exceptionally intrinsic activity, reaching a mass activity as high as 3571 A gmetal-1 and turnover frequency of 3348 O2 h-1 with a low overpotential of 267 mV at a current density of 10 mA cm-2. The catalyst shows no evident deactivation or decomposition after 30-hour operation in acidic environment. Operando synchrotron radiation X-ray absorption spectroscopy and infrared spectroscopy identify the dynamic adsorption of single oxygen atom on Ru site under working potentials, and theoretical calculations demonstrate that the O-Ru1-N4 site is responsible for the high OER activity and stability.

3.
J Am Chem Soc ; 141(19): 7807-7814, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31038309

RESUMO

Nitrogen fixation in a simulated natural environment (i.e., near ambient pressure, room temperature, pure water, and incident light) would provide a desirable approach to future nitrogen conversion. As the N≡N triple bond has a thermodynamically high cleavage energy, nitrogen reduction under such mild conditions typically undergoes associative alternating or distal pathways rather than following a dissociative mechanism. Here, we report that surface plasmon can supply sufficient energy to activate N2 through a dissociative mechanism in the presence of water and incident light, as evidenced by in situ synchrotron radiation-based infrared spectroscopy and near ambient pressure X-ray photoelectron spectroscopy. Theoretical simulation indicates that the electric field enhanced by surface plasmon, together with plasmonic hot electrons and interfacial hybridization, may play a critical role in N≡N dissociation. Specifically, AuRu core-antenna nanostructures with broadened light adsorption cross section and active sites achieve an ammonia production rate of 101.4 µmol g-1 h-1 without any sacrificial agent at room temperature and 2 atm pressure. This work highlights the significance of surface plasmon to activation of inert molecules, serving as a promising platform for developing novel catalytic systems.

4.
Nat Commun ; 10(1): 788, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770824

RESUMO

The photofixation and utilization of CO2 via single-electron mechanism is considered to be a clean and green way to produce high-value-added commodity chemicals with long carbon chains. However, this topic has not been fully explored for the highly negative reduction potential in the formation of reactive carbonate radical. Herein, by taking Bi2O3 nanosheets as a model system, we illustrate that oxygen vacancies confined in atomic layers can lower the adsorption energy of CO2 on the reactive sites, and thus activate CO2 by single-electron transfer in mild conditions. As demonstrated, Bi2O3 nanosheets with rich oxygen vacancies show enhanced generation of •CO2- species during the reaction process and achieve a high conversion yield of dimethyl carbonate (DMC) with nearly 100% selectivity in the presence of methanol. This study establishes a practical way for the photofixation of CO2 to long-chain chemicals via defect engineering.

5.
Phys Rev Lett ; 121(14): 145505, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30339427

RESUMO

Carbon (C) doping is essential for producing semi-insulating GaN for power electronics. However, to date the nature of C doped GaN, especially the lattice site occupation, is not yet well understood. In this work, we clarify the lattice site of C in GaN using polarized Fourier-transform infrared and Raman spectroscopies, in combination with first-principles calculations. Two local vibrational modes (LVMs) at 766 and 774 cm^{-1} in C doped GaN are observed. The 766 cm^{-1} mode is assigned to the nondegenerate A_{1} mode vibrating along the c axis, whereas the 774 cm^{-1} mode is ascribed to the doubly degenerate E mode confined in the plane perpendicular to the c axis. The two LVMs are identified to originate from isolated C_{N}^{-} with local C_{3v} symmetry. Experimental data and calculations are in outstanding agreement both for the positions and the intensity ratios of the LVMs. We thus provide unambiguous evidence of the substitutional C atoms occupying the N site with a -1 charge state in GaN and therefore bring essential information to a long-standing controversy.

6.
Angew Chem Int Ed Engl ; 57(50): 16447-16451, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30350910

RESUMO

Quantum dots (QDs), a class of promising candidates for harvesting visible light, generally exhibit low activity and selectivity towards photocatalytic CO2 reduction. Functionalizing QDs with metal complexes (or metal cations through ligands) is a widely used strategy for improving their catalytic activity; however, the resulting systems still suffer from low selectivity and stability in CO2 reduction. Herein, we report that doping CdS QDs with transition-metal sites can overcome these limitations and provide a system that enables highly selective photocatalytic reactions of CO2 with H2 O (100 % selectivity to CO and CH4 ), with excellent durability over 60 h. Doping Ni sites into the CdS lattice leads to effective trapping of photoexcited electrons at surface catalytic sites and substantial suppression of H2 evolution. The method reported here can be extended to various transition-metal sites, and offers new opportunities for exploring QD-based earth-abundant photocatalysts.

7.
ACS Nano ; 12(9): 9626-9632, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30189134

RESUMO

The limited ability to fabricate nanostructures on nonplanar rugged surfaces has severely hampered the applicability of many emerging technologies. Here we report a resist stencil lithography based approach for in situ fabrication of multidimensional nanostructures on both planar and uneven substrates. By using the resist film as a flexible stencil to form a suspending membrane with predesigned patterns, a variety of nanostructures have been fabricated on curved or uneven substrates of diverse morphologies on demand. The ability to realize 4 in. wafer scale fabrication of nanostructures as well as line width resolution of sub-20 nm is also demonstrated. Its extraordinary capacity is highlighted by the fabrication of three-dimensional wavy nanostructures with diversified cell morphologies on substrates of different curvatures. A robust general scheme is also developed to construct various complex 3D nanostructures. The use of conventional resists and processing ensures the versatility of the method. Such an in situ lithography technique has offered exciting possibilities to construct nanostructures with high dimensionalities that can otherwise not be achieved with existing nanofabrication methods.

8.
Chemistry ; 24(69): 18398-18402, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30102805

RESUMO

Metal-containing nanocrystals with well-designed surface structures represent a class of model systems for revealing the fundamental physical and chemical processes involved in heterogeneous catalysis. Herein it is shown how surface modification can be utilized as an efficient strategy for controlling the surface electronic state of catalysts and, thus, for tuning their catalytic activity. As model catalysts, the Pd-tetrahedron-TiO2 nanostructures, modified on the surface with different foreign atoms, showed a varied activity in the catalytic decomposition of formic acid towards H2 production. The catalytic activity increases with a reduction in the work function of modified atoms; this reduction can be well explained by a surface polarization mechanism. In this hybrid system, the difference in the work functions of Pd and modified atoms results in surface polarization on the Pd surface and, thus, in the tuning of its charge state. Together with the Schottky junction between TiO2 and metals, the tuned charge state enables the promotion of catalytic efficiency in the catalytic decomposition of formic acid to H2 and CO2 .

9.
J Am Chem Soc ; 140(30): 9434-9443, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29975522

RESUMO

Photocatalysis may provide an intriguing approach to nitrogen fixation, which relies on the transfer of photoexcited electrons to the ultrastable N≡N bond. Upon N2 chemisorption at active sites (e.g., surface defects), the N2 molecules have yet to receive energetic electrons toward efficient activation and dissociation, often forming a bottleneck. Herein, we report that the bottleneck can be well tackled by refining the defect states in photocatalysts via doping. As a proof of concept, W18O49 ultrathin nanowires are employed as a model material for subtle Mo doping, in which the coordinatively unsaturated (CUS) metal atoms with oxygen defects serve as the sites for N2 chemisorption and electron transfer. The doped low-valence Mo species play multiple roles in facilitating N2 activation and dissociation by refining the defect states of W18O49: (1) polarizing the chemisorbed N2 molecules and facilitating the electron transfer from CUS sites to N2 adsorbates, which enables the N≡N bond to be more feasible for dissociation through proton coupling; (2) elevating defect-band center toward the Fermi level, which preserves the energy of photoexcited electrons for N2 reduction. As a result, the 1 mol % Mo-doped W18O49 sample achieves an ammonia production rate of 195.5 µmol gcat-1 h-1, 7-fold higher than that of pristine W18O49. In pure water, the catalyst demonstrates an apparent quantum efficiency of 0.33% at 400 nm and a solar-to-ammonia efficiency of 0.028% under simulated AM 1.5 G light irradiation. This work provides fresh insights into the design of photocatalyst lattice for N2 fixation and reaffirms the versatility of subtle electronic structure modulation in tuning catalytic activity.

10.
Inorg Chem ; 57(12): 7121-7128, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29851482

RESUMO

Ba1+ xMoO4 (-0.03 ≤ x ≤ 0.03) ceramics were fabricated by a conventional two-step sintering technique. X-ray diffraction patterns show that there appeared new diffraction peaks when x > 0, which were identified as Ba2MoO5. The Rietveld refinement results indicate that the unit cell volume is the largest at x = -0.02, because it has the lowest packing fraction and covalency. The far-infrared reflectivity (IR) spectra were fitted and analyzed for calculating the intrinsic properties, which comply well with the data obtained from microscopic polarizabilities and damping coefficient angle. The proportion of each mode in the dielectric response demonstrates that the Ba-O8 polyhedra have a decisive role on the dielectric properties. And based on the Raman modes, the internal relations of the structural-properties were revealed with the changes of Ba2+ content.

11.
Phys Chem Chem Phys ; 20(17): 11643-11648, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29670960

RESUMO

Although far-infrared (IR) spectroscopy has been shown to be a powerful tool to determine peptide structure and to detect structural transitions in peptides, it has been overlooked in the characterization of proteins. Herein, we used far-IR spectroscopy to monitor the structure of four abundant non-bioactive proteins, namely, soybean protein isolate (SPI), pea protein isolate (PPI) and two types of silk fibroins (SFs), domestic Bombyx mori and wild Antheraea pernyi. The two globular proteins SPI and PPI result in broad and weak far-IR bands (between 50 and 700 cm-1), in agreement with those of some other bioactive globular proteins previously studied (lysozyme, myoglobin, hemoglobin, etc.) that generally only have random amino acid sequences. Interestingly, the two SFs, which are characterized by a structure composed of highly repetitive motifs, show several sharp far-IR characteristic absorption peaks. Moreover, some of these characteristic peaks (such as the peaks at 260 and 428 cm-1 in B. mori, and the peaks at 245 and 448 cm-1 in A. pernyi) are sensitive to conformational changes; hence, they can be directly used to monitor conformational transitions in SFs. Furthermore, since SF absorption bands clearly differ from those of globular proteins and different SFs even show distinct adsorption bands, far-IR spectroscopy can be applied to distinguish and determine the specific SF component within protein blends.


Assuntos
Modelos Moleculares , Proteínas/química , Espectrofotometria Infravermelho , Animais , Estrutura Terciária de Proteína
12.
Soft Matter ; 14(13): 2535-2546, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29538472

RESUMO

Fibrillation and the complexation reaction between poly(vinyl alcohol) (PVA)-iodine (i) complexes have been studied with in situ synchrotron radiation small- and wide-angle X-ray scattering (SAXS and WAXS) during the uniaxial stretching of PVA films in KI/I2 aqueous solution. SAXS results show that stretching induces the formation of nanofibrils, which pack periodically in the later stage of stretching with an average inter-fibrillar distance of around 10 nm. The onset strains for fibrillation and the appearance of periodicity of nanofibrils are located at the beginning and the end of the stress plateau, and decrease with increasing iodine concentration. In the stretching process as a whole, the presence of iodine ions reduces the crystallinity of the PVA crystal but favors the formation of a PVA-I complex. The complexation reaction is promoted by the synergistic effect of stretch and iodine ions, during which stretching drives the formation of polyiodine via the effect of entropic reduction while iodine concentration dictates crystallization of PVA-I3- co-crystals through the role of chemical potential. A morphological and structural phase diagram is constructed in the strain-iodine concentration space, which defines the regions for fibrillation and complexation reactions and may serve as a roadmap for the industrial processing of PVA polarizer.

13.
Nano Lett ; 18(2): 1373-1378, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29337565

RESUMO

Quantum mechanical effects of single particles can affect the collective plasmon behaviors substantially. In this work, the quantum control of plasmon excitation and propagation in graphene is demonstrated by adopting the variable quantum transmission of carriers at Heaviside potential steps as a tuning knob. First, the plasmon reflection is revealed to be tunable within a broad range by varying the ratio γ between the carrier energy and potential height, which originates from the quantum mechanical effect of carrier propagation at potential steps. Moreover, the plasmon excitation by free-space photos can be regulated from fully suppressed to fully launched in graphene potential wells also through adjusting γ, which defines the degrees of the carrier confinement in the potential wells. These discovered quantum plasmon effects offer a unified quantum-mechanical solution toward ultimate control of both plasmon launching and propagating, which are indispensable processes in building plasmon circuitry.

14.
Nanoscale ; 9(48): 19360-19366, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29199753

RESUMO

We report a comprehensive study on the effects of rhenium doping on optical properties and photocarrier dynamics of MoS2 monolayer, few-layer, and bulk samples. Monolayer and few-layer samples of Re-doped (0.6%) and undoped MoS2 were fabricated by mechanical exfoliation, and were studied by Raman spectroscopy, optical absorption, photoluminescence, and time-resolved differential reflection measurements. Similar Raman, absorption, and photoluminescence spectra were obtained from doped and undoped samples, indicating that the Re doping at this level does not significantly alter the lattice and electronic structures. Red-shift and broadening of the two phonon Raman modes were observed, showing the lattice strain and carrier doping induced by Re. The photoluminescence yield of the doped monolayer is about 15 times lower than that of the undoped sample, while the photocarrier lifetime is about 20 times shorter in the doped monolayer. Both observations can be attributed to diffusion-limited Auger nonradiative recombination of photocarriers at Re dopants. These results provide useful information for developing a doping strategy of MoS2 for optoelectronic applications.

15.
Sci Rep ; 7(1): 13336, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042593

RESUMO

Pr(Mg1/2Sn1/2)O3 (PMS) ceramic was prepared through a conventional solid-state reaction method. Crystal structure was investigated through X-ray diffraction (XRD), which certificates that the main phase is PMS with monoclinic P2 1/n1 symmetry. Lattice vibrational modes were obtained through Raman scattering spectroscopy and Fourier transform far-infrared reflection spectroscopy. The Raman spectrum active modes were assigned and illustrated, respectively, and then fitted with Lorentzian function. The four modes within the range of 110-200 cm-1 are derived from the F 2g vibrations (A-site cations), and the other three modes (300-430 cm-1) are derived from the F 2g vibrations (B-site cations).The mode with highest frequency above 650 cm-1 is attributed to A 1g -like mode that corresponds to the symmetric breathing of oxygen octahedral. The far-infrared spectrum with seven infrared active modes was fitted using four-parameter semi-quantum models to calculate intrinsic properties (permittivity and loss). F 2u(2) yielded the greatest contribution to dielectric constant and loss, which is mainly performed as the inverted translational vibration of Pr-MgO6 octahedron.

16.
Nano Lett ; 17(11): 6661-6666, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29064255

RESUMO

Two-dimensional materials, such as graphene, transition metal dichalcogenides, and phosphorene, can be used to construct van der Waals multilayer structures. This approach has shown potentials to produce new materials that combine novel properties of the participating individual layers. One key requirement for effectively harnessing emergent properties of these materials is electronic connection of the involved atomic layers through efficient interlayer charge or energy transfer. Recently, ultrafast charge transfer on a time scale shorter than 100 fs has been observed in several van der Waals bilayer heterostructures formed by two different materials. However, information on the transfer between two atomic layers of the same type is rare. Because these homobilayers are essential elements in constructing multilayer structures with desired optoelectronic properties, efficient interlayer transfer is highly desired. Here we show that electron transfer between two monolayers of MoSe2 occurs on a picosecond time scale. Even faster transfer was observed in homobilayers of WS2 and WSe2. The samples were fabricated by manually stacking two exfoliated monolayer flakes. By adding a graphene layer as a fast carrier recombination channel for one of the two monolayers, the transfer of the photoexcited carriers from the populated to the drained monolayers was time-resolved by femtosecond transient absorption measurements. The observed efficient interlayer carrier transfer indicates that such homobilayers can be used in van der Waals multilayers to enhance their optical absorption without significantly compromising the interlayer transport performance. Our results also provide valuable information for understanding interlayer charge transfer in heterostructures.

17.
Inorg Chem ; 56(15): 9321-9329, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28745894

RESUMO

In the present work, a series of low-temperature firing scheelite structured microwave dielectric in water-insoluble La2O3-Nb2O5-V2O5 system was prepared via the traditional solid-state reaction method. Backscattering electron diffraction, X-ray diffraction (XRD), energy-dispersive analysis, and Rietveld refinements were performed to study the phase evolution and crystal structure. In the full composition range of (1 - x)LaNbO4-xLaVO4 (0 ≤ x ≤ 0.9) ceramics, at least four typical phase regions including monoclinic fergusonite, tetragonal sheelite, B-site ordered sheelite, and composite of monoclinic LaVO4 and tetragonal sheelite phases can be detected according to XRD analysis. The variations of relative dielectric constant εr, quality factor Q × f, and resonant frequency τf could be attributed to Nb/V-O bond ionicity, lattice energy, and the coefficient of thermal expansion. Infrared reflectivity spectra analysis revealed that ion polarization contributed mainly to the permittivity in microwave frequencies ranges. Furthermore, the 0.7LaNbO4-0.3LaVO4 ceramic sintered at 1160 °C possessed excellent microwave dielectric properties with an εr of ∼17.78, a Q × f of ∼75 940 GHz, and a τf of ca. -36.8 ppm/°C. This series of materials might be good candidate for microwave devices.

18.
Sci Rep ; 7(1): 3201, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28600562

RESUMO

In this work, the (Na0.5Bi0.5)(Mo1-xWx)O4 (x = 0.0, 0.5 and 1.0) ceramics were prepared via solid state reaction method. All the samples can be well densified at sintering temperature about ~720 °C. Dense and homogeneous microstructure with grain size lying between 2~8 µm can be observed from scanning electron microscopy (SEM). Microwave dielectric permittivity of the (Na0.5Bi0.5)(Mo0.5W0.5)O4 ceramic was found to be temperature-independent in a wide range between 25~120 °C with a temperature coefficient of frequency (TCF) ~-6 ppm/°C, a permittivity ~28.9, and Qf values 12,000~14,000 GHz. Crystal structure was refined using Rietveld method and lattice parameters are a = b = 5.281 (5) Å and c = 11.550 (6) Å with a space group I 41/a (88). The (Na0.5Bi0.5)(Mo1-xWx)O4 ceramics might be good candidate for low temperature co-fired ceramics (LTCC) technology.

19.
Small ; 13(31)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28640522

RESUMO

Adsorption and activation of molecules on a surface holds the key to heterogeneous catalysis toward aerobic oxidative reactions. To achieve high catalytic activities, a catalyst surface should be rationally tailored to interact with both organic substrates and oxygen molecules. Here, a facile bottom-up approach to defective tungsten oxide hydrate (WO3 ·H2 O) nanosheets that contain both surface defects and lattice water is reported. The defective WO3 ·H2 O nanosheets exhibit excellent catalytic activity for aerobic coupling of amines to imines. The investigation indicates that the oxygen vacancies derived from surface defects supply coordinatively unsaturated sites to adsorb and activate oxygen molecules, producing superoxide radicals. More importantly, the Brønsted acid sites from lattice water can contribute to enhancing the adsorption and activation of alkaline amine molecules. The synergistic effect of oxygen vacancies and Brønsted acid sites eventually boosts the catalytic activity, which achieves a kinetic rate constant of 0.455 h-1 and a turnover frequency of 0.85 h-1 at 2 h, with the activation energy reduced to ≈35 kJ mol-1 . This work provides a different angle for metal oxide catalyst design by maneuvering subtle structural features, and highlights the importance of synergistic effects to heterogeneous catalysts.

20.
Rev Sci Instrum ; 88(2): 023108, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28249478

RESUMO

We demonstrate the use of a pump-probe setup based on two mid-infrared quantum cascade lasers (QCLs) to investigate the melting and crystallization of materials through resonant absorption. A combination of pump and probe beams fulfills the two-color synchronous detection. Furthermore, narrow linewidth advances the accuracy of measurements and the character of broad tuning range of QCLs enables wide applications in various sample and multiple structures. 1-Eicosene was selected as a simple model system to verify the feasibility of this method. A pulsed QCL was tuned to the absorption peak of CH2 bending vibration at 1467 cm-1 to resonantly heat the sample. The other QCL in continuous mode was tuned to 1643 cm-1 corresponding the C=C stretching vibration to follow the fast melting dynamics. By monitoring the transmission intensity variation of pump and probe beams during pump-probe experiments, the resonant absorption induced fast melting and re-crystallization of 1-Eicosene can be studied. Results show that the thermal effect and melting behaviors strongly depend on the pump wavelength (resonant or non-resonant) and energy, as well as the pump time. The realization and detection of melting and recrystallization can be performed in tens of milliseconds, which improves the time resolution of melting process study based on general mid-infrared spectrum by orders of magnitude. The availability of resonant heating and detections based on mid-infrared QCLs is expected to enable new applications in melting study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA