Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 20(1): 340, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31060518

RESUMO

BACKGROUND: Lysine crotonylation, as a novel evolutionarily conserved type of post-translational modifications, is ubiquitous and essential in cell biology. However, its functions in tea plants are largely unknown, and the full functions of lysine crotonylated proteins of tea plants in nitrogen absorption and assimilation remains unclear. Our study attempts to describe the global profiling of nonhistone lysine crotonylation in tea leaves and to explore how ammonium (NH4+) triggers the response mechanism of lysine crotonylome in tea plants. RESULTS: Here, we performed the global analysis of crotonylome in tea leaves under NH4+ deficiency/resupply using high-resolution LC-MS/MS coupled with highly sensitive immune-antibody. A total of 2288 lysine crotonylation sites on 971 proteins were identified, of which contained in 15 types of crotonylated motifs. Most of crotonylated proteins were located in chloroplast (37%) and cytoplasm (33%). Compared with NH4+ deficiency, 120 and 151 crotonylated proteins were significantly changed at 3 h and 3 days of NH4+ resupply, respectively. Bioinformatics analysis showed that differentially expressed crotonylated proteins participated in diverse biological processes such as photosynthesis (PsbO, PsbP, PsbQ, Pbs27, PsaN, PsaF, FNR and ATPase), carbon fixation (rbcs, rbcl, TK, ALDO, PGK and PRK) and amino acid metabolism (SGAT, GGAT2, SHMT4 and GDC), suggesting that lysine crotonylation played important roles in these processes. Moreover, the protein-protein interaction analysis revealed that the interactions of identified crotonylated proteins diversely involved in photosynthesis, carbon fixation and amino acid metabolism. Interestingly, a large number of enzymes were crotonylated, such as Rubisco, TK, SGAT and GGAT, and their activities and crotonylation levels changed significantly by sensing ammonium, indicating a potential function of crotonylation in the regulation of enzyme activities. CONCLUSIONS: The results indicated that the crotonylated proteins had a profound influence on metabolic process of tea leaves in response to NH4+ deficiency/resupply, which mainly involved in diverse aspects of primary metabolic processes by sensing NH4+, especially in photosynthesis, carbon fixation and amino acid metabolism. The data might serve as important resources for exploring the roles of lysine crotonylation in N metabolism of tea plants. Data were available via ProteomeXchange with identifier PXD011610.


Assuntos
Compostos de Amônio/farmacologia , Camellia sinensis/metabolismo , Crotonatos/química , Lisina/química , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/análise , Camellia sinensis/efeitos dos fármacos , Camellia sinensis/crescimento & desenvolvimento , Biologia Computacional , Fotossíntese , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Mapas de Interação de Proteínas
2.
J Agric Food Chem ; 67(16): 4689-4699, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30933485

RESUMO

Melatonin and gibberellin are bioactive molecules in plants. In the present study, the role of exogenous melatonin (MT) and gibberellin (GA) in the tea plant was explored by transcriptome and metabolic analysis. Results showed that the growth of tea plant was enhanced by MT treatment. The pathways of terpenoid synthesis and plant-pathogen interaction were significantly strengthened, combined with the upregulation of LRR-RLK and transcription factors which contributed to the growth of tea plant. The internode elongation and leaf enlargement were hastened by GA treatment. Significantly modulated expression occurred in the plant hormonal signal transduction, complemented by the upregulation of phenylpropanoid biosynthesis and expansins to achieve growth acceleration, whereas the flavonoid synthesis was repressed in GA treatment. Therefore, the distinctive effect of MT and GA treatment on tea plant was different. The MT exhibited significant promotion in terpenoid synthesis, especially, TPS14 and TPS1. GA was prominent in coordinated regulation of plant hormonal signal transduction.


Assuntos
Camellia sinensis/efeitos dos fármacos , Camellia sinensis/metabolismo , Giberelinas/farmacologia , Melatonina/farmacologia , Reguladores de Crescimento de Planta/farmacologia , Proteínas de Plantas/genética , Terpenos/metabolismo , Camellia sinensis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Arch Dermatol Res ; 311(4): 277-285, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30826962

RESUMO

To verify whether PsA-associated HLA alleles proposed in other populations are also related to PsA in Chinese Han population, a study of PsA susceptible alleles in the HLA-A, HLA-B, HLA-C and HLA-DRB1 alleles was presented for Chinese Han population. Genotyping was performed by Illumina Miseq platform (Illumina, USA). 50 subtypes and 77 subtypes of HLA-A, HLA-B, HLA-C and HLA-DRB1 with minor allele frequency (MAF) > 1% were genotyped from two-digit and four-digit resolution analysis in 111 PsA and 207 HCs (healthy controls) collected from Chinese Han population, respectively. Data handling, quality control and association analysis were performed using SPSS 25.0 software. In risk estimate, by mean of Bonferroni correction, a newfound four-digit allele HLA-A*01:01 [P = 5.5 × 10-4, OR 3.35 (1.69-6.66)], four-digit allele HLA-C*06:02 [P = 8.5 × 10-7, OR 3.80 (2.23-6.47)] and six two-digit alleles HLA-A*01 [P = 5.2 × 10-5, OR 3.43 (1.89-6.23)], HLA-B*13 [P = 4.0 × 10-6, OR 2.65 (1.76-4.01)], HLA-B*27 [P = 7.5 × 10-4, OR 5.84 (2.09-16.29)], HLA-B*57 [P = 5.8 × 10-5, OR 20.10 (4.65-86.83)], HLA-C*03 [P = 2.1 × 10-4, OR 0.40 (0.25-0.65)], HLA-C*06 [P = 1.9 × 10-12, OR 4.48 (2.95-6.81)] showed statistical significance by the univariate binary logistic regression analysis. Besides, in the binary logistic regression analysis with multiple variables, when the two alleles HLA-A*01:01 and HLA-C*06:02 were considered as covariates, HLA-A*01:01 [P = 2.7 × 10-3,OR 2.95 (1.46-5.98)] also showed significant association for PsA as risk factor, but may be not the main risk factor [HLA-C*06:02, P = 3.0 × 10-6, OR 3.68 (2.13-6.37)]. When all the above two-digit alleles were included as covariates, HLA-A*01 [P = 4.8 × 10-2, OR 2.00 (1.01-3.94)], HLA-B*13 [P = 4.2 × 10-5, OR 2.62 (1.65-4.16)], HLA-B*27 [P = 1.7 × 10-4, OR 7.62 (2.64-21.96)], HLA-B*57 [P = 2.97 × 10-4, OR 15.90 (3.55-71.18)], HLA-C*06 [P = 6.1 × 10-5, OR 2.70 (1.66-4.40)] showed significant for PsA as risk factors, HLA-C*03 [OR 0.65 (0.39-1.09), P = 0.10] showed no association with PsA. In conclusion, we assessed HLA-A, HLA-B, HLA-C and HLA-DRB1 alleles in PsA cohort of Chinese Han population, found HLA-A*01:01 and HLA-A*01 may be the susceptible genes associated with PsA, and also confirmed the association of four loci with PsA in Chinese Han population. These findings may extend the susceptibility HLA alleles of PsA and help in developing possible genetic markers to predict PsA.


Assuntos
Artrite Psoriásica/genética , Genótipo , Antígeno HLA-A1/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , China , Estudos de Coortes , Feminino , Frequência do Gene , Estudos de Associação Genética , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Complexo Principal de Histocompatibilidade/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Risco , Adulto Jovem
4.
BMC Plant Biol ; 18(1): 228, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30309330

RESUMO

BACKGROUND: Vacuolar invertases (VINs) have been reported to regulate plant growth and development and respond to abiotic stresses such as drought and cold. With our best knowledge, the functions of VIN genes little have been reported in tea plant (Camellia sinensis L.). Therefore, it is necessary to develop research in this field. RESULTS: Here, we identified a VIN gene, CsINV5, which was induced by cold acclimation and sugar treatments in the tea plant. Histochemical assays results showed that the 1154 bp 5'-flanking sequence of CsINV5 drove ß-glucuronidase (GUS) gene expression in roots, stems, leaves, flowers and siliques of transgenic Arabidopsis during different developmental stages. Moreover, promoter deletion analysis results revealed that an LTRE-related motif (CCGAAA) and a WBOXHVISO1 motif (TGACT) within the promoter region of CsINV5 were the core cis-elements in response to low temperature and sugar signaling, respectively. In addition, overexpression of CsINV5 in Arabidopsis promoted taproot and lateral root elongation through glucose-mediated effects on auxin signaling. Based on physiological and RNA-seq analysis, we found that overexpression of CsINV5 improved cold tolerance in transgenic Arabidopsis mainly by increasing the contents of glucose and fructose, the corresponding ratio of hexose to sucrose, and the transcription of osmotic-stress-related genes (P5CS1, P5CS2, AtLEA3, COR413-PM1 and COR15B) to adjust its osmotic potential. CONCLUSIONS: Comprehensive experimental results suggest that overexpression of CsINV5 may enhance the cold tolerance of plant through the modification of cellular sugar compounds contents and osmotic regulation related pathways.


Assuntos
Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Chá/enzimologia , beta-Frutofuranosidase/metabolismo , Arabidopsis/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , beta-Frutofuranosidase/genética
5.
Front Microbiol ; 9: 2175, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254625

RESUMO

The tea plant (Camellia sinensis (L.) O. Kuntze) is an economically important woody species. In this study, we collected 26 tea plant samples with typical discoloration symptoms from different tea gardens and performed metagenomic analysis based on next-generation sequencing. Homology annotation and PCR sequencing validation finally identified seven kinds of plant viruses from tea plant. Based on abundance distribution analysis, the two most abundant plant viruses were highlighted. Genetic characterization suggested that they are two novel virus species with relatively high homology to Blueberry necrotic ring blotch virus and American plum line pattern virus. We named the newly discovered viruses tea plant necrotic ring blotch virus (TPNRBV) and tea plant line pattern virus (TPLPV). Evolutionary relationship analysis indicated that TPNRBV and TPLPV should be grouped into the Blunervirus and the Ilarvirus genera, respectively. TPLPV might have same genome activation process with known ilarviruses based on sequence analysis. Moreover, specific primers for both viruses detection were designed and validated. The symptoms and ultrastructure of TPNRBV infected leaves were first recorded. Virus detections in the symptomatic and asymptomatic tissues from field plants showing tea plant necrotic ring blotch disease suggest that TPNRBV has a systemic movement feature. In summary, we first identified seven kinds of putative plant viruses by metagenomic analysis and report two novel viruses being latent pathogens to tea plant. The results will advance our understanding of tea plant virology and have significance for the genetic breeding of tea plants in the future.

6.
J Invest Dermatol ; 138(11): 2307-2314, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29857070

RESUMO

To identify possible additional genetic susceptibility loci for pemphigus vulgaris (PV), we performed a genome-wide association study of 240 PV patients and 1,031 control individuals, and we selected the top single nucleotide polymorphisms for replication in independent samples, with 252 patient samples and 1,852 control samples. We identified rs11218708 (P = 3.1 × 10-8, odds ratio = 1.54) at chromosome locus 11q24.1 as significantly associated with PV. A fine-mapping analysis of PV risk in the major histocompatibility complex region showed three independent variants predisposed to PV using stepwise analysis: HLA-DRB1*14:04 (P = 2.47 × 10-38, odds ratio = 6.28), rs7454108 at the TAP2 gene (P = 2.78 × 10-12, odds ratio = 3.25), and rs1051336 at the HLA-DRA gene (P = 3.06 × 10-6, odds ratio = 0.33). A systematic evaluation using gene- and pathway-based analyses showed a high tendency for PV susceptibility genes to be associated with autoimmunity. Our study highlights the involvement of immune-mediated processes in the pathophysiology of PV and illustrates the value of imputation to identify variants in the major histocompatibility complex region.

7.
J Plant Physiol ; 224-225: 144-155, 2018 May - Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29642051

RESUMO

The tea plant originated in tropical and subtropical regions and experiences considerable challenges during cold winters and late spring frosts. After short-term chilling stress, young leaves of tea plants exhibit browning, a significant increase in electrolyte leakage and a marked decrease in the maximal photochemical efficiency of photosystem II (Fv/Fm) compared with mature leaves. To identify the mechanisms underlying the different chilling tolerance between young and mature leaves of the tea plant, we used Illumina RNA-Seq technology to analyse the transcript expression profiles of young and mature leaves exposed to temperatures of 20 °C, 4 °C, and 0 °C for 4 h. A total of 45.70-72.93 million RNA-Seq raw reads were obtained and then de novo assembled into 228,864 unigenes with an average length of 601 bp and an N50 of 867 bp. In addition, the differentially expressed unigenes were identified via Venn diagram analyses for paired comparisons of young and mature leaves. Functional classifications based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the up-regulated differentially expressed genes were predominantly related to the cellular component terms of chloroplasts and cell membranes, the biological process term of oxidation-reduction process as well as the pathway terms of glutathione metabolism and photosynthesis, suggesting that these components and pathways may contribute to the cold hardiness of mature leaves. Conversely, the inhibited expression of genes related to cell membranes, carotenoid metabolism, photosynthesis, and ROS detoxification in young leaves under cold conditions might lead to the disintegration of cell membranes and oxidative damage to the photosynthetic apparatus. Further quantitative real-time PCR testing validated the reliability of our RNA-Seq results. This work provides valuable information for understanding the mechanisms underlying the cold susceptibility of young tea plant leaves and for breeding tea cultivars with superior frost resistance via the genetic manipulation of antioxidant enzymes.


Assuntos
Camellia sinensis/fisiologia , Temperatura Baixa , Proteínas de Plantas/genética , Transcrição Genética , Transcriptoma , Camellia sinensis/genética , Eletrólitos/metabolismo , Fenótipo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo
8.
Plant Mol Biol ; 96(6): 577-592, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29616437

RESUMO

KEY MESSAGE: Thirteen SWEET transporters were identified in Camellia sinensis and the cold-suppression gene CsSWEET16 contributed to sugar compartmentation across the vacuole and function in modifying cold tolerance in Arabidopsis. The sugars will eventually be exported transporters (SWEET) family of sugar transporters in plants is a recently identified protein family of sugar uniporters that contain seven transmembrane helices harbouring two MtN3 motifs. SWEETs play important roles in various biological processes, including plant responses to environmental stimuli. In this study, 13 SWEET transporters were identified in Camellia sinensis and were divided into four clades. Transcript abundances of CsSWEET genes were detected in various tissues. CsSWEET1a/1b/2a/2b/2c/3/9b/16/17 were expressed in all of the selected tissues, whereas the expression of CsSWEET5/7/9a/15 was not detected in some tissues, including those of mature leaves. Expression analysis of nine CsSWEET genes in leaves in response to abiotic stresses, natural cold acclimation and Colletotrichum camelliae infection revealed that eight CsSWEET genes responded to abiotic stress, while CsSWEET3 responded to C. camelliae infection. Functional analysis of 13 CsSWEET activities in yeast revealed that CsSWEET1a/1b/7/17 exhibit transport activity for glucose analogues and other types of hexose molecules. Further characterization of the cold-suppression gene CsSWEET16 revealed that this gene is localized in the vacuolar membrane. CsSWEET16 contributed to sugar compartmentation across the vacuole and function in modifying cold tolerance in Arabidopsis. Together, these findings demonstrate that CsSWEET genes play important roles in the response to abiotic and biotic stresses in tea plants and provide insights into the characteristics of SWEET genes in tea plants, which could serve as the basis for further functional identification of such genes.


Assuntos
Arabidopsis/genética , Camellia sinensis/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , Aclimatação/genética , Sequência de Aminoácidos , Transporte Biológico/genética , Temperatura Baixa , Colletotrichum/fisiologia , Hexoses/metabolismo , Proteínas de Membrana Transportadoras/classificação , Família Multigênica/genética , Filogenia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/classificação , Plantas Geneticamente Modificadas , Homologia de Sequência de Aminoácidos
9.
Hortic Res ; 5: 18, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29619229

RESUMO

Anthracnose causes severe losses of tea production in China. Although genes and biological processes involved in anthracnose resistance have been reported in other plants, the molecular response to anthracnose in tea plant is unknown. We used the susceptible tea cultivar Longjing 43 and the resistant cultivar Zhongcha 108 as materials and compared transcriptome changes in the leaves of both cultivars following Colletotrichum fructicola inoculation. In all, 9015 and 8624 genes were differentially expressed between the resistant and susceptible cultivars and their controls (0 h), respectively. In both cultivars, the differentially expressed genes (DEGs) were enriched in 215 pathways, including responses to sugar metabolism, phytohormones, reactive oxygen species (ROS), biotic stimuli and signalling, transmembrane transporter activity, protease activity and signalling receptor activity, but DEG expression levels were higher in Zhongcha 108 than in Longjing 43. Moreover, functional enrichment analysis of the DEGs showed that hydrogen peroxide (H2O2) metabolism, cell death, secondary metabolism, and carbohydrate metabolism are involved in the defence of Zhongcha 108, and 88 key genes were identified. Protein-protein interaction (PPI) network demonstrated that putative mitogen-activated protein kinase (MAPK) cascades are activated by resistance (R) genes and mediate downstream defence responses. Histochemical analysis subsequently validated the strong hypersensitive response (HR) and H2O2 accumulation that occurred around the hyphal infection sites in Zhongcha 108. Overall, our results indicate that the HR and H2O2 are critical mechanisms in tea plant defence against anthracnose and may be activated by R genes via MAPK cascades.

10.
Exp Dermatol ; 27(7): 748-753, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29630754

RESUMO

Psoriasis is a chronic multifactorial disease and is considered to be strongly associated with the major histocompatibility complex (MHC) region. We have discovered an independent, novel and susceptible psoriasis risk HLA loci, rs9266150; P = 4.52 × 10-9 for the first time. In this study, we aimed to verify the relationship between the susceptible locus and the subphenotypes of psoriasis vulgaris (PV), including geographic location, gender, age of onset, family history and present skin lesion types (chronic plaque and guttate). To investigate the distribution and association of the rs9266150 gene with clinical phenotypes of PV in Chinese Han population, we conducted an analysis in case-control and case-only subjects in the 9906 controls and 8744 cases by MHC targeted sequencing stratified analysis in this study. Significant associations were found with a northern geographic location in the case-only (P = 1.97 × 10-4 ) and the subphenotype-control analyses (P = 5.57 × 10-5 ), males in the case-only (P = 4.77 × 10-3 ) and the subphenotype-control analyses (P = 7.31 × 10-4 ), and guttate psoriasis in the case-only (P = 4.08 × 10-3 ) and the subphenotype-control analyses (P = 1.27 × 10-3 ). There were no significant differences observed between the age of onset (OR = 1.062, 95% CI: 0.9725-1.16, P = 1.8 × 10-1 ) and the family history of psoriasis (OR = 0.981, 95% CI: 0.9048-1.064, P = 6.43 × 10-1 ). The recessive model provided the best fit for rs9266150 (P = 4.38 × 10-7 ). Our results implied that rs9266150 might not only play an important role in the development of psoriasis, but also be positively associated with the geographic location, gender and present skin lesion in the Chinese population.

11.
Plant Cell Rep ; 37(3): 425-441, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29214380

RESUMO

KEY MESSAGE: Thirty genes involved in GA and ABA metabolism and signalling were identified, and the expression profiles indicated that they play crucial roles in the bud activity-dormancy transition in tea plants. Gibberellin (GA) and abscisic acid (ABA) are fundamental phytohormones that extensively regulate plant growth and development, especially bud dormancy and sprouting transition in perennial plants. However, there is little information on GA- and ABA-related genes and their expression profiles during the activity-dormancy transition in tea plants. In the present study, 30 genes involved in the metabolism and signalling pathways of GA and ABA were first identified, and their expression patterns in different tissues were assessed. Further evaluation of the expression patterns of selected genes in response to GA3 and ABA application showed that CsGA3ox, CsGA20ox, CsGA2ox, CsZEP and CsNCED transcripts were differentially expressed after exogenous treatment. The expression profiles of the studied genes during winter dormancy and spring sprouting were investigated, and somewhat diverse expression patterns were found for GA- and ABA-related genes. This diversity was associated with the bud activity-dormancy cycle of tea plants. These results indicate that the genes involved in the metabolism and signalling of GA and ABA are important for regulating the bud activity-dormancy transition in tea plants.


Assuntos
Ácido Abscísico/metabolismo , Camellia sinensis/genética , Perfilação da Expressão Gênica , Giberelinas/metabolismo , Meristema/genética , Dormência de Plantas/genética , Ácido Abscísico/farmacologia , Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/metabolismo , Análise por Conglomerados , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Especificidade de Órgãos/genética , Reguladores de Crescimento de Planta/metabolismo , Reguladores de Crescimento de Planta/farmacologia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estações do Ano , Transdução de Sinais/genética , Chá
12.
J Gene Med ; 19(9-10)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28581127

RESUMO

BACKGROUND: The human major histocompatibility complex (MHC) is known to be highly polymorphic and has been identified to be associated with numerous diseases. The HLA-DPB1 and BTNL2 genes were associated with psoriasis for the first time. The present study aims to investigate the relevance of the HLA-DPB1 and BTNL2 genes with respect to clinical phenotypes of psoriasis vulgaris (PV). METHODS: To investigate whether the HLA-DPB1 and BTNL2 polymorphisms were associated with clinical phenotypes of PV in Chinese Han population, we conducted an analysis in case-controls and case-only subjects (9906 controls and 8744 cases) via MHC targeted sequencing stratified analysis. RESULTS: In cases and controls, analysis showed that the genotype of HLA-DPB1*05:01 was associated with type of guttate [p = 3.914 × 10-2 , odds ratio (OR = 0.9335)] and northern region (p = 1.182 × 10-3 , OR = 0.9108). In the case-only analysis, the genotype of HLA-DPB1*05:01 was significantly correlated with geographical region (p = 1.36 × 10-3 , OR = 1.134). In cases and controls, analysis showed that the genotype of BTNL2 (rs 41355746) was associated with being male (p = 2.563 × 10-2 , OR = 0.8897), early-onset (p = 9.399 × 10-3 , OR = 0.8856), guttate (p = 2.469 × 10-2 , OR = 0.8558) and family history (p = 1.51 × 10-4 , OR = 0.772). In the case-only analysis, the genotype of BTNL2 (rs41355746) was significantly correlated with family history (p = 1.768 × 10-3 , OR = 0.757) and age of onset (p = 3.818 × 10-2 , OR = 1.195). CONCLUSIONS: The results of the present study indicate that the HLA-DPB1*05:01 gene was associated with the geographical region of PV and the BTNL2 gene was significantly associated with family history and age of onset of PV. In conclusion, the HLA-DPB1*05:01 and BTNL2 genes might be responsible for the complicacy of clinical features.


Assuntos
Butirofilinas/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Cadeias beta de HLA-DP/genética , Fenótipo , Psoríase/diagnóstico , Psoríase/genética , Alelos , Grupo com Ancestrais do Continente Asiático , Butirofilinas/imunologia , Estudos de Casos e Controles , China/epidemiologia , Feminino , Frequência do Gene , Genótipo , Cadeias beta de HLA-DP/imunologia , Humanos , Masculino , Razão de Chances , Psoríase/epidemiologia , Psoríase/imunologia
13.
Ann Bot ; 119(7): 1195-1209, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334275

RESUMO

Background and Aims: Basic region/leucine zipper (bZIP) transcription factors play vital roles in the abiotic stress response of plants. However, little is known about the function of bZIP genes in Camellia sinensis . Methods: CsbZIP6 was overexpressed in Arabidopsis thaliana . Effects of CsbZIP6 overexpression on abscisic acid (ABA) sensitivity, freezing tolerance and the expression of cold-responsive genes in arabidopsis were studied. Key Results: CsbZIP6 was induced during cold acclimation in tea plant. Constitutive overexpression of CsbZIP6 in arabidopsis lowered the plants' tolerance to freezing stress and ABA exposure during seedling growth. Compared with wild-type (WT) plants, CsbZIP6 overexpression (OE) lines exhibited increased levels of electrolyte leakage (EL) and malondialdehyde (MDA) contents, and reduced levels of total soluble sugars (TSS) under cold stress conditions. Microarray analysis of transgenic arabidopsis revealed that many differentially expressed genes (DEGs) between OE lines and WT plants could be mapped to 'response to cold' and 'response to water deprivation' terms based on Gene Ontology analysis. Interestingly, CsbZIP6 overexpression repressed most of the cold- and drought-responsive genes as well as starch metabolism under cold stress conditions. Conclusions: The data suggest that CsbZIP6 functions as a negative regulator of the cold stress response in A. thaliana , potentially by down-regulating cold-responsive genes.


Assuntos
Aclimatação/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Camellia sinensis/genética , Congelamento , Proteínas de Plantas/genética , Ácido Abscísico , Arabidopsis/genética , Camellia sinensis/fisiologia , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico
14.
J Plant Physiol ; 209: 95-104, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28013175

RESUMO

Hexokinases (HXKs, EC 2.7.1.1) and fructokinases (FRKs, EC 2.7.1.4) play important roles in carbohydrate metabolism and sugar signaling during the growth and development of plants. However, the HXKs and FRKs in the tea plant (Camellia sinensis) remain largely unknown. In this manuscript, we present the molecular characterization, phylogenetic relationships, conserved domains and expression profiles of four HXK and seven FRK genes of the tea plant. The 11 deduced CsHXK and CsFRK proteins were grouped into six main classes. All of the deduced proteins, except for CsFKR7, possessed putative ATP-binding motifs and a sugar recognition region. These genes exhibited tissue-specific expression patterns, which suggests that they play different roles in the metabolism and development of source and sink tissues in the tea plant. There were variations in CsHXKs and CsFRKs transcript abundance in response to four abiotic stresses: cold, salt, drought and exogenous abscisic acid (ABA). Remarkably, CsHXK3 and CsHXK4 were significantly induced in the leaves and roots under cold conditions, CsHXK1 was apparently up-regulated in the leaves and roots under salt and drought stresses, and CsHXK3 was obviously stimulated in the leaves and roots under short-term treatment with exogenous ABA. These findings demonstrate that CsHXKs play critical roles in response to abiotic stresses in the tea plant. Our research provides a fundamental understanding of the CsHXK and CsFRK genes of the tea plant and important information for the breeding of stress-tolerant tea cultivars.


Assuntos
Camellia sinensis/enzimologia , Camellia sinensis/genética , Genes de Plantas , Estresse Fisiológico/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Camellia sinensis/fisiologia , Sequência Conservada , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Plant Cell Rep ; 35(11): 2269-2283, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27538912

RESUMO

KEY MESSAGE: Fourteen invertase genes were identified in the tea plant, all of which were shown to participate in regulating growth and development, as well as in responding to various abiotic stresses. Invertase (INV) can hydrolyze sucrose into glucose and fructose, which plays a principal role in regulating plant growth and development as well as the plants response to various abiotic and biotic stresses. However, currently, there is a lack of reported information, regarding the roles of INVs in either tea plant development or in the tea plants response to various stresses. In this study, 14 INV genes were identified from the transcriptome data of the tea plant (Camellia sinensis (L.) O. Kuntze), and named CsINV1-5 and CsINV7-15. Based on the results of a Blastx search and phylogenetic analysis, the CsINV genes could be clustered into 6 acid invertase (AI) genes and 8 alkaline/neutral invertase (A/N-Inv) genes. The results of tissue-specific expression analysis showed that the transcripts of all the identified CsINV genes are detectable in various tissues. Under various abiotic stress conditions, the expression patterns of the 14 CsINV genes were diverse in both the leaves and roots, and some of them were shown to be significantly expressed. Overall, we hypothesize that the identified CsINV genes all participate in regulating growth and development in the tea plant, and most likely through different signaling pathways that regulate the carbohydrate allocation and the ratio of hexose and sucrose for improving the resistance of the leaves and the roots of the tea plant to various abiotic stresses.


Assuntos
Camellia sinensis/enzimologia , Camellia sinensis/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Família Multigênica , Estresse Fisiológico/genética , beta-Frutofuranosidase/genética , Motivos de Aminoácidos , Camellia sinensis/fisiologia , Sequência Conservada/genética , Perfilação da Expressão Gênica , Especificidade de Órgãos/genética , Filogenia , Domínios Proteicos , Fatores de Tempo , beta-Frutofuranosidase/metabolismo
16.
J Agric Food Chem ; 64(35): 6685-93, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27541180

RESUMO

Tea plant (Camellia sinensis) is one of the most economically valuable crops in the world. Anthracnose can affect the growth of leaves and cause serious yield losses of tea. Tea plants are rich in secondary metabolites; however, their roles in resistance to anthracnose are unclear. Herein we compared the contents of total phenolics, catechins, and caffeine in two cultivars with different resistances to anthracnose during Colletotrichum fructicola infection. (-)-Epigallocatechin-3-gallate (EGCG), (+)-catechin (C), caffeine, and critical regulatory genes were induced in C. fructicola-resistant tissues. In vitro antifungal tests showed that caffeine more strongly inhibited mycelial growth than tea polyphenols and catechins. Both electron microscopy and bioactivity analysis results showed that caffeine can affect mycelial cell walls and plasma membranes. Through promoter sequences analysis, a number of stress response-related cis-acting elements were identified in S-adenosylmethionine synthetase and tea caffeine synthase. These results demonstrated that (-)-EGCG, (+)-C, and caffeine may be involved in the resistance of tea plants to anthracnose.


Assuntos
Cafeína/metabolismo , Camellia sinensis/metabolismo , Colletotrichum/fisiologia , Doenças das Plantas/microbiologia , Extratos Vegetais/metabolismo , Camellia sinensis/genética , Camellia sinensis/microbiologia , Catequina/análogos & derivados , Catequina/metabolismo , Colletotrichum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Oncol Res ; 22(2): 75-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25706394

RESUMO

MicroRNAs (miRNAs) play crucial roles in the development and progression of human cancers, including gastric cancer. The discovery of miRNAs may provide a new and powerful tool for studying the mechanism, diagnosis, and treatment of gastric cancer. Here we show that miR-181a levels were significantly downregulated in gastric cancer tissues compared with the adjacent normal regions in 80 paired samples. Moreover, the lower levels of miR-181a were associated with the pM or pTNM stage in clinical gastric cancer patients. In addition, the ectopic expression of miR-181a in the gastric cancer cell line HGC-27 inhibited cell proliferation, cell migration, and invasion by directly interacting with the mRNA encoding the oncogenic factor Prox1. Taken together, our results indicate that miR-181a might act as a tumor suppressor in gastric cancer, which may provide a novel diagnostic and therapeutic option for human gastric cancer in the near future.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Adulto , Idoso , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Ciclina D1/genética , Regulação para Baixo , Feminino , Proteínas de Homeodomínio/genética , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA