Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 632
Filtrar
1.
Molecules ; 26(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34834039

RESUMO

COVID-19 is a highly contagious human infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the war with the virus is still underway. Since no specific drugs have been made available yet and there is an imbalance between supply and demand for vaccines, early diagnosis and isolation are essential to control the outbreak. Current nucleic acid testing methods require high sample quality and laboratory conditions, which cannot meet flexible applications. Here, we report a laser-induced graphene field-effect transistor (LIG-FET) for detecting SARS-CoV-2. The FET was manufactured by different reduction degree LIG, with an oyster reef-like porous graphene channel to enrich the binding point between the virus protein and sensing area. After immobilizing specific antibodies in the channel, the FET can detect the SARS-CoV-2 spike protein in 15 min at a concentration of 1 pg/mL in phosphate-buffered saline (PBS) and 1 ng/mL in human serum. In addition, the sensor shows great specificity to the spike protein of SARS-CoV-2. Our sensors can realize fast production for COVID-19 rapid testing, as each LIG-FET can be fabricated by a laser platform in seconds. It is the first time that LIG has realized a virus sensing FET without any sample pretreatment or labeling, which paves the way for low-cost and rapid detection of COVID-19.

2.
Adv Mater ; : e2108243, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34837255

RESUMO

The elastic storage and release of mechanical energy has been key to many developments throughout the history of mankind. Resilience, absent hysteresis, has been an elusive goal to achieve, particularly at large deformations. Using a low-crosslink density polyacrylamide hydrogel at 96% water content having hyper-branched silica nanoparticles (HBSPs) as the major junction points, we have realized a hysteresis-free material. The fatigue-free characteristic of these composite hydrogels is evidenced by the invariance of the stress-strain curves at strain ratios of 4, even after 5,000 cycles. At a strain ratio of 7, only a 1.3% hysteresis is observed. A markedly increased strain ratio-at-break of 11.5 is observed. The unique attributes of these resilient hydrogels are manifested in the high-fidelity detection of dynamic deformations under cyclic loading over a broad range of frequencies, difficult to achieve with other materials. This article is protected by copyright. All rights reserved.

3.
BMC Pulm Med ; 21(1): 348, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34742287

RESUMO

BACKGROUND: High-throughput next-generation sequencing (HT-NGS) has the potential to detect a large variety of pathogens; however, the application of HT-NGS in lung transplant (LTx) recipients remains limited. We aimed to evaluate the value of HT-NGS for pathogen detection and diagnosis of pulmonary infection during early-stage post-lung transplantation. METHODS: In this retrospective study, we enrolled 51 LTx recipients who underwent lung transplantation between January 2020 and December 2020. Bronchoalveolar lavage fluid (BALF) samples were collected for the detection of pathogens using both HT-NGS and conventional microbiological testing. The detection of pathogens and diagnostic performance of HT-NGS were compared with that of conventional methods. RESULTS: HT-NGS provided a higher positive rate of pathogen detection than conventional microbiological testing (88.24% vs. 76.47%). The most common bacteria detected via HT-NGS during early-stage post-lung transplantation were Enterococcus, Staphylococcus, Pseudomonas and Klebsiella, while all fungi were Candida and all viruses were Herpesvirus. Uncommon pathogens, including Strongyloides, Legionella, and Mycobacterium abscesses were identified by HT-NGS. The sensitivity of HT-NGS for diagnosing pulmonary infection was significantly higher than that of conventional microbiological testing (97.14% vs. 68.57%; P < 0.001). For three LTx recipients, treatment regimens were adjusted according to the results of HT-NGS, leading to a complete recovery. CONCLUSION: HT-NGS is a highly sensitive technique for pathogen detection, which may provide diagnostic advantages, especially in LTx recipients, contributing to the optimization of treatment regimens against pulmonary infection during early-stage post-lung transplantation.

4.
Food Chem ; : 131558, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34794838

RESUMO

The kernel of Torreya grandis (T. grandis) is a rare nut with a variety of bioactive compounds. Flavonoids are a very important class of bioactive compounds with high antioxidant activity in T. grandis kernels. However, the flavonoid compositions which mainly contribute to antioxidant capacity and the molecular basis of flavonoid biosynthesis in T. grandis remain unclear. Here, transcriptome sequencing and metabolomics analysis for kernels were performed. In total, 124 flavonoids were identified. Among them, 9 flavonoids were highly correlated with antioxidant activity. Furthermore, unigenes encoding CHS, DFR and ANS showed significant correlation with the 9 flavonoids. Transient overexpression of TgDFR1 in tobacco leaves resulted in increased antioxidant activity. Moreover, several transcription factors from MYB, bHLH and bZIP families were identified by co-expression assay, suggesting that they may regulate flavonoid biosynthesis. Our findings provide a molecular basis and new insights into the flavonoid biosynthesis in T. grandis kernels.

5.
Zhongguo Zhong Yao Za Zhi ; 46(19): 4969-4977, 2021 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-34738391

RESUMO

The high shear wet granulation(HSWG) process of Chinese medicine has a complicated mechanism. There are many influencing factors that contribute to this process. In order to summarize the manufacturability of different kinds of materials in HSWG, this paper constructed a material library composed of 11 materials, including 4 Chinese medicine extracts and 7 pharmaceutical excipients. Each material was described by 22 physical parameters. Several binders were employed, and their density, viscosity and surface tension were characterized. Combining empirical constraints and the principle of randomization, 21 designed experiments and 8 verification experiments were arranged. The partial least squares(PLS) algorithm was used to establish a process model in prediction of the median granule size based on properties of raw materials and binders, and process parameters. The surface tension and density of binders, as well as the maximum pore saturation were identified as key variables. In the latent variable space of the HSWG process model, all materials could be divided into three categories, namely the Chinese medicine extracts, the diluents and the disintegrants. The granulation of Chinese medicine extracts required low viscosity and low amount of binder, and the resulted granule sizes were small. The diluent powders occupied a large physical space, and could be made into granules with different granule sizes by adjusting the properties of binders. The disintegrants tended to be made into large granules under the condition of aqueous binder. The combination use of material database and multivariate modeling method is conducive to innovate the knowledge discovery of the wet granulation process of Chinese medicine, and provides a basis for the formulation and process design based on material attributes.


Assuntos
Excipientes , Medicina Tradicional Chinesa , Composição de Medicamentos , Tamanho da Partícula , Pós , Comprimidos , Tecnologia Farmacêutica
6.
Artigo em Inglês | MEDLINE | ID: mdl-34699115

RESUMO

Facile synthesis and post-processing of covalent organic frameworks (COFs) under mild synthetic conditions are highly sought after and important for widespread utilizations in catalysis and energy storage. Here we report the synthesis of the chemically stable aza-fused COFs BPT-COF and PT-COF by a liquid-phase method. The process involves the spontaneous polycondensation of vicinal diamines and vicinal diketones, and is driven by the near-equilibrium growth of COF domains at a very low monomer concentration. The method permits in situ assembly of COFs and COF-GO hybrid materials and leads to the formation of a uniform conducting film on arbitrary substrates on vacuum filtration. When used as electrocatalysts, the as-prepared membranes show a fast hydrogen evolution reaction (HER) with a low overpotential (45 mV at 10 mA cm-2 ) and a small Tafel slope (53 mV dec-1 ), which are the best among metal-free catalysts. Our results may open a new route towards the preparation of highly π-conjugated COFs for multifunctional applications.

7.
Nat Commun ; 12(1): 6113, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671044

RESUMO

Integrative colloidosomes with hierarchical structure and advanced function may serve as biomimetic microreactors to carry out catalytic reactions by compartmentalizing biological species within semipermeable membranes. Despite of recent progress in colloidosome design, integration of biological and inorganic components into tiered structures to tackle the remaining challenges of biocatalysis is highly demanded. Here, we report a rational design of three-tiered colloidosomes via the Pickering emulsion process. The microreactor consists of crosslinked amphiphilic silica-polymer hybrid nanoparticles as the semipermeable shell, an enzyme-incorporated catalytic sub-layer, and a partially-silicified adsorptive lumen. By leveraging confinement and enrichment effect, we demonstrate the acceleration of lipase-catalyzed ester hydrolysis within the microcompartment of organic-inorganic hybrid colloidosomes. The catalytic colloidosomes are further assembled into a closely packed column for enzymatic reactions in a continuous flow format with enhanced reaction rates. The three-tiered colloidosomes provide a reliable platform to integrate functional building blocks into a biomimetic compartmentalized microreactor with spatially controlled organization and high-performance functions.


Assuntos
Reatores Biológicos , Coloides/química , Materiais Biomiméticos , Catálise , Emulsões , Enzimas Imobilizadas/química , Ésteres/química , Hidrólise , Lipase/química , Nanocompostos/química , Nanopartículas/química , Polímeros/química , Dióxido de Silício/química
8.
Microvasc Res ; 139: 104263, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34655603

RESUMO

Cannabinoids are reported to regulate cardiovascular functions. Cannabinoid receptors 1 (CB1Rs) are widely expressed in both the neuronal system and vascular system, but the contribution of CB1Rs in vascular smooth muscle (CB1RSM) to cardiovascular functions is not clear yet. In this research, we analyzed the effects of CB1RSM on blood pressure, vasoconstriction, and vasodilation abilities by using conditionally CB1R knockout mice (CB1RSMKO). The results show no significant difference in basal blood pressure between the conscious CB1RSMKO and control mice, indicating that CB1RSM is not essential for basal blood pressure maintenance. The constriction of the CB1RSMKO mesenteric artery in vitro was not significantly altered compared with that of the control mice. In contrast, the relaxation to CB1R agonist 2-AG or WIN55212-2 was decreased in CB1RSMKO vessels, suggesting that activation of CB1RSM mediates the vasodilation effect of cannabinoids. Ischemia stroke mouse model was used to further identify the potential function of CB1RSM in pathological conditions, and the results showed that the infarct volume in CB1RSMKO mice is significantly increased compared with the control littermates. These results suggest that vascular CB1R may not play a central role in basal vascular health maintenance but is protective in ischemia states, such as stroke. The protection function may be mediated, at least partly, by the relaxation effect of CB1RSM-dependent activities of endocannabinoids.

9.
Clin Transl Med ; 11(10): e548, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709754

RESUMO

RATIONALE: A high risk of post-operative recurrence contributes to the poor prognosis and low survival rate of oesophageal squamous cell carcinoma (ESCC) patients. Increasing experimental evidence suggests that integrin adhesion receptors, in particular integrin αv (ITGAV), are important for cancer cell survival, proliferation and migration. Therefore, targeting ITGAV may be a rational approach for preventing ESCC recurrence. MATERIALS AND METHODS: Protein levels of ITGAV were determined in human ESCC tumour tissues using immunohistochemistry. MTT, propidium iodide staining, and annexin V staining were utilized to investigate cell viability, cell cycle progression, and induction of apoptosis, respectively. Computational docking was performed with the Schrödinger Suite software to visualize the interaction between indomethacin and ITGAV. Cell-derived xenograft mouse models, patient-derived xenograft (PDX) mouse models, and a humanized mouse model were employed for in vivo studies. RESULTS: ITGAV was upregulated in human ESCC tumour tissues and increased ITGAV protein levels were associated with poor prognosis. ITGAV silencing or knockout suppressed ESCC cell growth and metastatic potential. Interestingly, we identified that indomethacin can bind to ITGAV and enhance synovial apoptosis inhibitor 1 (SYVN1)-mediated degradation of ITGAV. Integrin ß3, one of the ß subunits of ITGAV, was also decreased at the protein level in the indomethacin treatment group. Importantly, indomethacin treatment suppressed ESCC tumour growth and prevented recurrence in a PDX mouse model. Moreover, indomethacin inhibited the activation of cytokine TGFß, reduced SMAD2/3 phosphorylation, and increased anti-tumour immune responses in a humanized mouse model. CONCLUSION: ITGAV is a promising therapeutic target for ESCC. Indomethacin can attenuate ESCC growth through binding to ITGAV, promoting SYVN1-mediated ubiquitination of ITGAV, and potentiating cytotoxic CD8+ T cell responses.

10.
Langmuir ; 37(44): 13125-13131, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34714092

RESUMO

Enzyme-instructed self-assembly is an increasingly attractive topic owing to its broad applications in biomaterials and biomedicine. In this work, we report an approach to construct enzyme-responsive aqueous surfactant two-phase (ASTP) systems serving as enzyme substrates by using a cationic surfactant (myristoylcholine chloride) and a series of anionic surfactants. Driven by the hydrophobic interaction and electrostatic attraction, self-assemblies of cationic-anionic surfactant mixtures result in biphasic systems containing condensed lamellar structures and coexisting dilute solutions, which turn into homogeneous aqueous phases in the presence of hydrolase (cholinesterase). The enzyme-sensitive ASTP systems reported in this work highlight potential applications in the active control of biomolecular enrichment/release and visual detection of cholinesterase.

12.
Chem Commun (Camb) ; 57(80): 10371-10374, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34541598

RESUMO

A transformative concept of solid electrochemical corrosion has been put forward, in which solid-state electrolyte LiPON has been applied to replace the liquid one to prelithiate graphite with Li-metal. Thus, high prelithiation efficiency and low polarization of the treated anode can be obtained, with a unique mosaic structure left at the surface.

13.
Rev Cardiovasc Med ; 22(3): 1003-1008, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34565101

RESUMO

This study described the trend and distribution of coronary heart disease (CHD) in the Hexi Corridor region of Gansu. The CHD mortality rates from 2006-2015 were obtained through the Death Reporting System of Gansu Centers for Disease Control (CDC) for 2006-2015. The overall mortality rate of CHD in the Hexi Corridor showed a decreasing trend, increasing in winter and spring and lowest in summer. The CHD mortality rate was higher in men than in women (P < 0.05) and increased with age (P < 0.05). The mortality rate was higher in rural areas than in urban areas (P < 0.05). A ten-year mortality rate trend analysis showed that CHD mortality rate in women has significantly decreased. Specifically, women aged 18-39 years experienced increased There was little change in CHD mortality among women aged 40-59 years, and a declined in CHD mortality among women 60 years and older and women in urban areas. Further analysis showed that in the 18-39-year-old and 40-59-year-old groups and in urban areas, CHD mortality rate was higher in men than in women (P < 0.05). From 2006 to 2015, the mortality rate of CHD in the Hexi Corridor of Gansu was lower than in the national average, but in certain populations such as men, young and middle-aged group and rural areas, the CHD mortality rate was gradually increased. There has been a gradual and progressive decline in CHD mortality rate compared to the rising trend in China. This is due to fewer risk factors in the region, effective drug treatment and improvements in environmental pollution. However, there is still a need to enhance the experience of effective prevention and control for specific subgroups such as men, young people and rural residents, and to take appropriate measures to prevent the occurrence of CHD.


Assuntos
Doença das Coronárias , Adolescente , Adulto , China/epidemiologia , Doença das Coronárias/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , População Rural , Adulto Jovem
14.
Mol Plant ; 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34530166

RESUMO

Nitrogen is an essential nutrient for plant growth and development, and plays vital roles in crop yield. Assimilation of nitrogen is thus fine-tuned in response to heterogeneous environments. However, the regulatory mechanism underlying this essential process remains largely unknown. Here, we report that a zinc-finger transcription factor, drought and salt tolerance (DST), controls nitrate assimilation in rice by regulating the expression of OsNR1.2. We found that loss of function of DST results in a significant decrease of nitrogen use efficiency (NUE) in the presence of nitrate. Further study revealed that DST is required for full nitrate reductase activity in rice and directly regulates the expression of OsNR1.2, a gene showing sequence similarity to nitrate reductase. Reverse genetics and biochemistry studies revealed that OsNR1.2 encodes an NADH-dependent nitrate reductase that is required for high NUE of rice. Interestingly, the DST-OsNR1.2 regulatory module is involved in the suppression of nitrate assimilation under drought stress, which contributes to drought tolerance. Considering the negative role of DST in stomata closure, as revealed previously, the positive role of DST in nitrogen assimilation suggests a mechanism coupling nitrogen metabolism and stomata movement. The discovery of this coupling mechanism will aid the engineering of drought-tolerant crops with high NUE in the future.

15.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3824-3831, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34472255

RESUMO

The present study aimed to provide the protection strategies for wild germplasm resources of original plants of Viticis Fructus and a theoretical basis for the sustainable use of Viticis Fructus. The genetic diversity and genetic structures of the 232 indivi-duals in 19 populations of Vitex rotundifolia and V. trifolia were analyzed by eight SSR markers with tools such as Popgene32, GenAlex 6.502, and STRUCTURE. Bottleneck effect was detected for the population with more than 10 individuals. The results indicated that 42 and 26 alleles were detected from the populations of V. rotundifolia and V. trifolia, respectively, with average expected heterozygo-sities of 0.448 6 and 0.583 9, which are indicative of low genetic diversity. AMOVA revealed the obvious genetic variation of V. rotundifolia and V. trifolia within population(84.43%, P<0.01; 60.37%, P<0.01). Furthermore, in eight SSR loci, six from V. rotundifolia populations and two from V. trifolia populations failed to meet Hardy-Weinberg equilibrium expectations(P<0.05), which confirmed that the populations experienced bottleneck effect. As assessed by Mantel test, geographical distance posed slight impacts on the genetic variation between the populations of V. rotundifolia and V. trifolia. Principal component analysis(PCA) and STRUCTURE analysis demonstrated evident introgression of genes among various populations. The original plants of Viticis Fructus were confirmed low in genetic diversity and genetic differentiation level. Therefore, the protection of wild resources of original plants of Viticis Fructus should be strengthened to ensure its sustainable use.


Assuntos
Variação Genética , Vitex , Alelos , Frutas/genética , Geografia , Repetições de Microssatélites , Vitex/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-34562051

RESUMO

Accurate control of the layer number of orderly stacked 2D polymers has been an unsettled challenge in self-assembly. Herein we describe the fabrication of a bilayer 2D supramolecular organic framework from a monolayer 2D supramolecular organic framework in water by utilizing the cooperative coordination of a rod-like bipyridine ligands to zinc porphyrin subunits of the monolayer network. The monolayer supramolecular framework is prepared from the co-assembly of an octacationic zinc porphyrin monomer and cucurbit[8]uril (CB[8]) in water through CB[8]-encapsulation-promoted dimerization of 4-phenylpyridiunium subunits that the zinc porphyrin monomer bear. The bilayer 2D supramolecular organic framework exhibits structural regularity in both solution and the solid state, which is characterized by synchrotron small-angle X-ray scattering and high-resolution transmission electron microscopic techniques. Atomic force microscopic imaging confirms that the bilayer character of the 2D supramolecular organic framework can be realized selectively on the micrometer scale.

17.
Chem Asian J ; 16(22): 3658-3663, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34494362

RESUMO

Despite being used as an anti-leukemic drug, the poor solubility of 6-mercaptopurine (6-MP) limits its use in topical and parenteral applications. Dendrimers are commonly used as drug carriers to improve their solubility in aqueous solution. In this work, the interactions between 6-MP and the amine-terminated poly(amidoamine) dendrimers (PAMAM-NH2 ) were investigated by various NMR technology. The chemical shift titrations disclosed that the 6-MP interacted with the surface of PAMAM-NH2 mainly through electrostatics. The determination of diffusion coefficient and relaxation measurements further confirmed the presence of interactions in 6-MP/PAMAM-NH2 complexes. In addition, the encapsulation of 6-MP within the cavity of PAMAM-NH2 was revealed through nuclear Overhauser effect spectroscopy and Saturation Transfer Double Difference analysis. Finally, the binding strength (H-8 is 100% and H-2 is 70%) of 6-MP to PAMAM-NH2 was quantitatively expressed using epitope maps. This study provides a systematic methodology for qualitative and quantitative studies of the interactions between dendrimers and drug molecules in general.

18.
J Inorg Biochem ; 225: 111616, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34555601

RESUMO

Ruthenium-containing complexes have emerged as good alternative to the currently used platinum-containing drugs for malignant tumor therapy. In this work, cytotoxic effects of recently synthesized ruthenium polypyridyl complexes [Ru(bpy)2(CFPIP)](ClO4)2 (bpy = 2,2'-bipyridine, CFPIP = (E)-2-(4-fluorostyryl)-1H-imidazo[4,5-f][1,10]phenanthroline, Ru(II)-1), [Ru(phen)2(CFPIP)](ClO4)2 (phen = 1,10-phenanthroline, Ru(II)-2) and [Ru(dmb)2(CFPIP)](ClO4)2 (dmb = 4,4'-dimethyl-2,2'-bipyridine, Ru(II)-3) toward different tumor cells were investigated in vitro and compared with cisplatin, the most widely used chemotherapeutic drug against hepatocellular carcinoma (HepG-2). The results demonstrate that target complexes show excellent cytotoxicity against HepG-2 cells with low IC50 value of 21.4 ± 1.5, 18.0 ± 2.1 and 22.3 ± 1.7 µM, respectively. It was important noting that target Ru(II) complexes exhibited better antitumor activity than cisplatin (IC50 = 28.5 ± 2.4 µM) against HepG-2 cells, and has no obvious toxicity to normal cell LO2. DNA binding results suggest that Ru(II)-1, Ru(II)-2 and Ru(II)-3 interact with CT DNA (calf thymus DNA) through intercalative mode. Complexes exerted its antitumor activity through increasing anti-migration and inducing cell cycle arrest at the S phase. In addition, the apoptosis was tested by AO (acridine orange)/EB (ethidium bromide) staining and flow cytometry. Mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and colocalization tests were also evaluated by ImageXpress Micro XLS system. Overall, the results show that the ruthenium polypyridyl complexes induce apoptosis in HepG-2 cells through ROS-mediated mitochondria dysfunction pathway.

19.
Zhongguo Zhong Yao Za Zhi ; 46(14): 3540-3550, 2021 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-34402276

RESUMO

Cannabinoid receptor type 2( CB2 R),a member of the G protein-coupled receptor( GPCR) superfamily,has a variety of biological activities,such as regulating pain response,resisting inflammation and fibrosis,and mediating bone metabolism. Some CB2 R regulators exhibit a good regulatory effect on bone metabolism. Cannabinoids in Cannabis sativa can cause psychoactive effects despite various pharmacological actions they exerted by targeting CB2 R. Therefore,it is of great significance to discover CB2 R regulators in non-Cannabis plants for finding new lead compounds without psychoactive effects and elucidating the action mechanism of plant drugs. The present study clarifies the discovery,structure,and physiological functions of CB2 R,especially its regulatory effects on bone metabolism,summarized CB2 R regulators extracted from non-Cannabis plants,and systematically analyzes the regulatory effects of CB2 R regulators on bone metabolism in animals,osteoblasts,and osteoclasts,to provide a scientific basis for the discovery of new CB2 R regulators and the development of anti-osteoporotic drugs.


Assuntos
Canabinoides , Cannabis , Animais , Canabinoides/farmacologia , Osteoblastos , Osteoclastos , Receptores de Canabinoides
20.
Biosens Bioelectron ; 192: 113539, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34365287

RESUMO

Caspase-3 and hydrogen peroxide (H2O2) are closely associated with numerous diseases, both of them are vital in different physiological and pathological conditions. They are closely related and also can act independently. The selective and accurate determination of caspase-3 and H2O2 simultaneously to determine their state of being in different situations is of great significance for further study of their molecular mechanisms and the elucidation of their biological functions. In our latest research, a AuNPL-crown nanoprobe was obtained by attaching (4-aminosulfonylphenyl) boronic acid (4-APBA) and peptide-FITC (NH2-Asp-Glu-Val-Asp (DEVD)-FITC) to gold nanoplates (AuNPLs). The fabricated AuNPL-crown nanoprobe was used for dual-channel and real-time tracking of the dynamic changes in caspase-3 and H2O2 based on fluorescence resonance energy transfer (FRET)/surface-enhanced Raman spectroscopy (SERS) technology. The AuNPL-crown nanoprobe not only provides synergy but can also achieve noninterference, making the results more reliable and repeatable. This study simultaneously traced the dynamic changes of caspase-3 and H2O2 on a single probe, which provides a potential new platform for the analysis of caspase-3 and H2O2 in the biological environment with high accuracy, sensitivity, convenience, and efficiency. In summary, we develop a new strategy for the simultaneous detection of different substances on a single probe.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Caspase 3 , Transferência Ressonante de Energia de Fluorescência , Ouro , Peróxido de Hidrogênio , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...