Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Mais filtros

Base de dados
Intervalo de ano de publicação
J Steroid Biochem Mol Biol ; 198: 105537, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31785377


Porcine pancreatic stem cells (pPSCs) can be induced to insulin-secreting cells and therefore considered the most promising seeding cells for curing human diabetes in future. However, insufficient pPSCs number is one of the bottleneck problems before its clinical application. SerpinB1 is a serine protease inhibitor in neutrophils and can directly promote the proliferation of ß cells. Whether SerpinB1 is involved in pPSC proliferation and differentiation remains unknown. The effects of SerpinB1 on pPSCs proliferation were measured by Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, qRT-PCR, western blot, and flow cytometry assays. We found that pPSCs did not efficiently reach the S phase when SerpinB1 expression was knocked down with short hairpin RNA (sh-SerpinB1), the expression of Cyclin D1, CDK-2, and PCNA also decreased. Meanwhile, cell viability and proliferation ability were both declined. Further analyses showed that the expression level of phosphorylated STAT3/STAT3was downregulated, along with an upregulation of p53 and p21. We used a two-step induction method to induce pPSCs to insulin-secreting cells and found that SerpinB1 expression in insulin-secreting cells was higher than in pPSCs. Meanwhile, the protein expression level of phosphorylated STAT3/STAT3 was increased while p53 and p21 was decreased in induced insulin-secreting cells in comparison with control cells. The insulin-secreting cells derived from the sh-SerpinB1 cells secreted less insulin and showed poor sensitivity to high glucose than control group. However, the insulin-secreting cells derived from the ov-SerpinB1 cells has a quite contrary tendency. In conclusion, this study demonstrates that SerpinB1 promotes the proliferation of pPSCs through the STAT3 signaling pathway, and SerpinB1 is a key factor for maintaining the viability of pPSCs during the transition to insulin-secreting cells.