Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
1.
Int J Biol Macromol ; 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34610351

RESUMO

The purpose of this study was to prepare spiky titanium dioxide nanoparticles-loaded Plantaginis Semen polysaccharide (SN-TiO2-PSP), and the structural characterization and immune response of infectious laryngotracheitis (ILT) vaccine in Hetian chickens were investigated. The structural characterization of SN-TiO2-PSP was analyzed by FT-IR, TEM, and TGA analysis. And the immune organs indexes, lymphocytes proliferation, specific antibody levels, and ratios of CD4+ and CD8+ T lymphocytes were studied. Structural characterization results showed that SN-TiO2-PSP has a typical polysaccharide absorption peak and good stability. The SN-TiO2-PSP's shape was similar to sea urchin, and its zeta potential and particle size were 27.56 mV and 976.11 nm, respectively. In vivo results showed that SN-TiO2-PSP could enhance the proliferation of peripheral lymphocytes, specific antibody levels, CD4+ and CD8+ T lymphocytes ratios, IL-4 and INF-γ levels in Hetian chickens vaccinated with ILT vaccine on D7, D14, D21, and D28. In addition, SN-TiO2-PSP not only enhanced the indexes of immune organs but also promoted the development of immune organs. Therefore, SN-TiO2-PSP has immune adjuvant activity and may become a new potential immune adjuvant.

2.
Appl Opt ; 60(25): 7721-7730, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613242

RESUMO

In low-Earth orbit, the already existing population of small and medium debris (between 1 cm and several dozens of cm) is a concrete threat to operational satellites. A space-based laser space debris removal (SLDR) system that can remove hazardous debris around selected space assets appears to be a flexible and effective project. To achieve high-precision tracking and emitting, the optical system of the SLDR mission includes a target-detection telescope and emitting telescope, adopting a common light path structure. The optical design results, system performance, tolerance budget, and detailed stray light control design are presented in this paper. The large-aperture off-axis two-mirror beam-narrowing system characteristics are also discussed in terms of stray light control. This paper will present the lateral-displacement (LD) setting, two-stage fore baffle design, black baffle surface selection, and opening direction of the telescope door. The results showed that the stray light elimination reaches a 10-9 order, meeting design requirements.

3.
Ann Palliat Med ; 10(8): 8692-8700, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34488358

RESUMO

BACKGROUND: Few studies comprehensively compared the performance of magnetic resonance elastography (MRE) and transient elastography (TE) in the diagnosis of liver fibrosis. Therefore, we conducted a meta-analysis to evaluate and compare the diagnostic efficacy of these 2 techniques in patients with hepatic fibrosis in order to gain a better understanding of their overall diagnostic performance and aid in maximizing their clinical utility. METHODS: Systematic literature searches of the PubMed, EmBase, Cocharane Library, and China National Knowledge Infrastructure databases were carried out to identify studies that applied MRE and TE in the diagnosis of liver fibrosis. The combined sensitivity, specificity, positive and negative likelihood ratios, and diagnostic odds ratio (ORs) were estimated using a bivariate random effects model. Review Manager 5.2 was used to analyze the selected articles, and forest plot, sensitivity, and bias analyses were performed for the included literature. To determine the diagnostic efficacy of MRE and TE for liver fibrosis, pooled sensitivity and specificity analyses were conducted. RESULTS: Eight studies met the inclusion criteria. In the diagnosis of stage F0-F1 liver fibrosis, MRE showed higher sensitivity than TE (OR =0.62, 95% CI: 0.41-0.95, P=0.03). MRE also showed higher specificity than TE for diagnosing stage F2-F4 liver fibrosis (OR =0.41, 95% CI: 0.27-0.62, P<0.0001). There was no difference in the sensitivity of MRE and Te to F2-F4 hepatic fibrosis and the specificity of MRE and Te to F0-F1 hepatic fibrosis. CONCLUSIONS: In terms of sensitivity and specificity, MRE is superior to TE in diagnosing different stages of liver fibrosis to a certain extent. MRE may be a useful, noninvasive method for the assessment of liver fibrosis in patients with chronic liver disease.


Assuntos
Técnicas de Imagem por Elasticidade , Bases de Dados Factuais , Humanos , Cirrose Hepática/diagnóstico por imagem , Projetos de Pesquisa , Sensibilidade e Especificidade
4.
Artigo em Inglês | MEDLINE | ID: mdl-34478387

RESUMO

Deep neural network-based models have achieved great success in extractive question answering. Recently, many works have been proposed to model multistage matching for this task, which usually first retrieve relevant paragraphs or sentences and then extract an answer span from the retrieved results. However, such a pipeline-based approach suffers from the error propagation problem, especially for sentence-level retrieval that is usually difficult to achieve high accuracy due to the severe data imbalance problem. Furthermore, since the paragraph/sentence selector and the answer extractor are closely related, modeling them independently does not fully exploit the power of multistage matching. To solve these problems, we propose a novel end-to-end multigranularity reading comprehension model, which is a unified framework to explicitly model three matching granularities, including paragraph identification, sentence selection, and answer extraction. Our approach has two main advantages. First, the end-to-end approach alleviates the error propagation problem in both the training and inference phases. Second, the shared features in a unified model improve the learning of representations of different matching granularities. We conduct a comprehensive comparison on four large-scale datasets (SQuAD-open, NewsQA, SQuAD 2.0, and SQuAD Adversarial) and verify that the proposed approach outperforms both the vanilla BERT model and existing multistage matching approaches. We also conduct an ablation study and verify the effectiveness of the proposed components in our model structure.

5.
J Pharm Pharmacol ; 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559876

RESUMO

OBJECTIVE: To investigate whether the silent information regulator 1 (SIRT1) was involved in the protective effects of Ganoderma lucidum polysaccharides (GLP) against sepsis-induced cardiac dysfunction. METHODS: Lipopolysaccharide (LPS)-induced sepsis model was constructed in C57/BL6J mice. Mice were randomly divided into LPS + GLP + EX-527, LPS + EX-527, LPS + GLP, LPS or control group). The levels of serum inflammatory factor markers were examined by ELISA. H&E staining was performed to assess the inflammation. TUNEL staining and bromodeoxyuridine staining were used to observe cell apoptosis and proliferation, respectively. Expression of apoptosis and proliferation-related proteins was detected by western blot. KEY FINDINGS: GLP treatment could significantly increase the expression of SIRT1, reduce levels of serum inflammatory factors (TNF-α, IL-1α and IL-6) and inflammatory cells in mice heart tissue of sepsis models (all Ps < 0.01). Compared with LPS group, GLP treatment inhibited apoptosis and promoted proliferation of myocardial tissues (all Ps < 0.01). Besides, EX-527 (SIRT1 inhibitor) treatment could partially reverse the protective effects of GLP against sepsis-induced cardiac dysfunction (all Ps < 0.01). CONCLUSIONS: GLP might play a protective role in sepsis-induced cardiac dysfunction through regulating inflammatory response, apoptosis and proliferation via activating SIRT1. Therefore, GLP is expected to be a probable novel strategy for treatment of sepsis.

6.
Artigo em Inglês | MEDLINE | ID: mdl-34562047

RESUMO

An efficient and general radical hydroamination of alkenes using Co(salen) as catalyst, N-fluorobenzenesulfonimide (NFSI) and its analogues as both nitrogen source and oxidant was successfully disclosed. A variety of alkenes, including aliphatic alkenes, styrenes, α, ß-unsaturated esters, amides, acids, as well as enones, were all compatible to provide desired amination products. Mechanistic experiments suggest that the reaction underwent a metal-hydride-mediated hydrogen atom transfer (HAT) with alkene, followed by a pivotal catalyst controlled SN2-like pathway between in situ generated organocobalt(IV) species and nitrogen-based nucleophiles. Moreover, by virtue of modified chiral cobalt(II)-salen catalyst, an unprecedented asymmetric version was also achieved with good to excellent level of enantiocontrol. This novel asymmetric radical C-N bond construction opens a new door for the challenging asymmetric radical hydrofunctionalization.

7.
Oncol Rep ; 46(5)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34528694

RESUMO

Ubiquilin­1 (UBQLN1) is an essential factor for the maintenance of proteostasis in cells. It is important for the regulation of different protein degradation mechanisms, including the ubiquitin­proteasome system, autophagy and endoplasmic reticulum­associated protein degradation pathways. However, the role of UBQLN1 in cancer progression remains largely unknown. In the present study, the expression, functions and molecular mechanisms of UBQLN1 in breast cancer tissue samples and cell lines were explored. Immunohistochemical and bioinformatics analyses revealed that UBQLN1 expression was significantly upregulated in breast cancer tissues and cell lines. UBQLN1 expression in breast cancer was significantly associated with lymph node metastasis and TNM stage. Moreover, a high UBQLN1 expression was a predictor of an unfavorable survival in patients with breast cancer. In vitro, UBQLN1 silencing markedly inhibited cell migration and invasion, epithelial­to­mesenchymal transition (EMT) and MMP expression. UBQLN1 silencing attenuated the stem cell­like properties of breast cancer cells, including their mammosphere­forming abilities. UBQLN1 knockdown also enhanced breast cancer cell chemosensitivity to paclitaxel. The expression levels of the stem cell markers. Aldehyde dehydrogenase 1 (ALDH1), Oct­4 and Sox2 were significantly decreased in the cells in which UBQLN1 was silenced, whereas breast cancer stem cells exhibited an increased expression of UBQLN1. Mechanistically, UBQLN1 knockdown inhibited the activation of AKT signaling, as revealed by the increased PTEN expression and the decreased expression of phosphorylated AKT in cells in which UBQLN1 was silenced. On the whole, the present study demonstrates that UBQLN1 is aberrantly upregulated in breast cancer and predicts a poor prognosis. The silencing of UBQLN1 inhibited the invasion, EMT and stemness of breast cancer cells, possibly via AKT signaling.

8.
Microbiol Spectr ; : e0068721, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34585985

RESUMO

H7N9 avian influenza virus (AIV) is an emerging zoonotic pathogen, and it is necessary to develop a differentiating infected from vaccinated animals (DIVA) vaccine for the purpose of eradication. H7N9 subtype AIV hemagglutinin subunit 2 glycoprotein (HA2) peptide chips and antisera of different AIV subtypes were used to screen H7N9 AIV-specific epitopes. A selected specific epitope in the HA2 protein of H7N9 AIV strain A/Chicken/Huadong/JD/17 (JD/17) was replaced with an epitope from an H3N2 subtype AIV strain by reverse genetics. The protection and serological DIVA characteristics of the recombinant H7N9 AIV strain were evaluated. The results showed that a specific epitope on the HA2 protein of H7N9 AIV, named the H7-12 peptide, was successfully screened. The recombinant H7N9 AIV with a modified epitope in the HA2 protein was rescued and named A/Chicken/Huadong/JD-cHA/17 (JD-cHA/17). The HA titer of JD-cHA/17 was 10 log2, and the 50% egg infective dose (EID50) titer was 9.67 log10 EID50/ml. Inactivated JD-cHA/17 induced a hemagglutination inhibition (HI) antibody titer similar that of the parent strain and provided 100% protection against high-pathogenicity or low-pathogenicity H7N9 AIV challenge. A peptide chip coated with H7-12 peptide was successfully applied to detect the seroconversion of chickens infected or vaccinated with JD/17, while there was no reactivity with antisera of chickens vaccinated with JD-cHA/17. Therefore, the marked vaccine candidate JD-cHA/17 can be used as a DIVA vaccine against H7N9 avian influenza when combined with an H7-12 peptide chip, making it a useful tool for stamping out the H7N9 AIV. IMPORTANCE DIVA vaccine is a useful tool for eradicating avian influenza, especially for highly pathogenic avian influenza. Several different DIVA strategies have been proposed for avian influenza inactivated whole-virus vaccine, involving the neuraminidase (NA), nonstructural protein 1 (NS1), matrix protein 2 ectodomain (M2e), or HA2 gene. However, virus reassortment, residual protein in a vaccine component, or reduced vaccine protection may limit the application of these DIVA strategies. Here, we constructed a novel chimeric H7N9 AIV, JD-cHA/17, that expressed the entire HA protein with substitution of an H3 AIV epitope in HA2. The chimeric H7N9 recombinant vaccine provides full clinical protection against high-pathogenicity or low-pathogenicity H7N9 AIV challenge. Combined with a short-peptide-based microarray chip containing the H7N9 AIV epitope in HA2, our finding is expected to be useful as a marker vaccine designed for avian influenza.

9.
Bioengineered ; 12(1): 4666-4680, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34338150

RESUMO

The aim of this study was to explore the potential molecular mechanisms of Gastric cancer (GC) and identify new prognostic markers for GC. RNA sequencing data were downloaded from the Gene Expression Omnibus database, and 418 differentially expressed genes (DEGs) were screened. Weighted correlation network analysis (WGCNA) was performed to identify six hub modules related to the clinical features of GC. Cytoscape software was used to identify five hub genes in the co-expression network, including CST1, CEMIP, COL8A1, PMEPA1, and MSLN. The TCGA database was used to verify hub gene expression in GC. The overall survival in the high CEMIP expression group was significantly lower than that of patients in the low CEMIP expression group. CEMIP expression was also found to be negatively correlated with B cell and CD4 + T cell infiltration. Further, associated in vitro experiments confirmed that CEMIP downregulation suppressed the proliferation and migration of GC cells and impaired the chemoresistance of GC cells to 5-fluorouracil.Our study effectively identified and validated prognostic biomarkers for GC, laying a new foundation for the therapeutic target, occurrence, and development of gastric cancer.

10.
Biochem Biophys Res Commun ; 571: 96-103, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34314996

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) has been verified as a really common cancer worldwide. Several studies have suggested that the suppression of malignancy growth can be traced to miR-199a-5p. Even though CDC25A could activate the tumorigenesis of various cancer by modulating cell cycle, the modulation of the miR-199a-5p/CDC25A axis is still not clear in HCC. Our aim is to identify the modulation of the miR-199a-5p/CDC25A axis in HCC. METHODS: The expression of CDC25A and miR-199a-5p in HCC cells and tissues was assessed using qRT-PCR. After using western blot assay to confirm the protein level, luciferase reporter and RNA pull-down assays were performed to explore the relation between CDC25A and miR-199a-5p. Functional assays such as CCK8 assay, BrdU proliferation assay and flow cytometry analysis identified the cell progression. RESULTS: Experimental findings indicated the downregulation of miR-199a-5p in HCC samples. It was also found that miR-199a-5p overexpression declined the development of the cells with HCC and that it could bind to CDC25A to suppress the progression of HCC. CONCLUSION: Research suggested that miR-199a-5p could restrain the proliferation ability of HCC cells by regulating CDC25A, thus inducing cell-cycle arrest.

11.
Int J Biol Macromol ; 187: 272-280, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34303739

RESUMO

The aim of this study was to explore the indirect immunomodulatory activities and its mechanism of enzymatic hydrolysis of Hericium erinaceus polysaccharides (EHEP) in the MODE-K/DCs co-culture model. According to the TEER value, transmission of phenol red and AKP activity of MODE-K cells, single model was established in order to evaluate the eligibility of MODE-K cells monolayer. Then the MODE-K/DCs co-culture model was set up and HEP and EHEP were added into the apical chamber, DCs were obtained for the expression of key surface markers, the ability of phagocytosis, the morphology, the secretion of cytokines and the production of target proteins. We found that after 21 d of culture, the MODE-K cells monolayer became intact and dense, which can be used for the MODE-K/DCs co-culture model. Under the treatment of HEP and EHEP, immature DCs become into mature DCs with the high expression of CD86 and MHCII, the low antigens up-taking, the typical morphology, the more content of IL-12 and TNF-α and the high level of TLR4, MyD88 and NF-κB proteins. However, compared with HEP, EHEP showed the better immunomodulatory activities. These findings indicated that EHEP could indirectly affect the immune function of DCs in the MODE-K/DCs co-culture model.

12.
Brain ; 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245240

RESUMO

Spreading depolarizations (SD) are highly prevalent and spatiotemporally punctuated events worsening the outcome of brain injury. Trigger factors are poorly understood but may be linked to sudden worsening in supply-demand mismatch in compromised tissue. Sustained or transient elevations in intracranial pressure (ICP) are also prevalent in injured brain. Here, using a mouse model of large hemispheric ischemic stroke, we show that mild and brief ICP elevations (20 or 30 mmHg for just 3 minutes) potently trigger SDs in ischemic penumbra (4-fold increase in SD occurrence). We also show that 30 mmHg ICP spikes as brief as 30 seconds are equally effective. In contrast, sustained ICP elevations to the same level for 30 minutes do not significantly increase the SD rate, suggesting that an abrupt disturbance in the steady state equilibrium is required to trigger an SD. Laser speckle flowmetry consistently showed a reduction in tissue perfusion, and two-photon pO2 microscopy revealed a drop in venous pO2 during the ICP spikes suggesting increased oxygen extraction fraction, and therefore, worsening supply-demand mismatch. These hemodynamic changes during ICP spikes were associated with highly reproducible increases in extracellular potassium levels in penumbra. Consistent with the experimental data, higher rate of ICP spikes was associated with SD clusters in a retrospective series of patients with aneurysmal subarachnoid hemorrhage with strong temporal correspondence. Altogether, our data show that ICP spikes, even when mild and brief, are capable of triggering SDs. Aggressive prevention of ICP spikes may help reduce SD occurrence and improve outcomes after brain injury.

13.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946876

RESUMO

The hair follicle dermal papilla is critical for hair generation and de novo regeneration. When cultured in vitro, dermal papilla cells from different species demonstrate two distinguishable growth patterns under the conventional culture condition: a self-aggregative three dimensional spheroidal (3D) cell pattern and a two dimensional (2D) monolayer cell pattern, correlating with different hair inducing properties. Whether the loss of self-aggregative behavior relates to species-specific differences or the improper culture condition remains unclear. Can the fixed 2D patterned dermal papilla cells recover the self-aggregative behavior and 3D pattern also remains undetected. Here, we successfully constructed the two growth patterns using sika deer (Cervus nippon) dermal papilla cells and proved it was the culture condition that determined the dermal papilla growth pattern. The two growth patterns could transit mutually as the culture condition was exchanged. The fixed 2D patterned sika deer dermal papilla cells could recover the self-aggregative behavior and transit back to 3D pattern, accompanied by the restoration of hair inducing capability when the culture condition was changed. In addition, the global gene expressions during the transition from 2D pattern to 3D pattern were compared to detect the potential regulating genes and pathways involved in the recovery of 3D pattern and hair inducing capability.


Assuntos
Cervos/anatomia & histologia , Folículo Piloso/citologia , Antígeno AC133/biossíntese , Antígeno AC133/genética , Fosfatase Alcalina/biossíntese , Fosfatase Alcalina/genética , Animais , Biomarcadores , Agregação Celular , Técnicas de Cultura de Células , Divisão Celular , Células Cultivadas , Cervos/genética , Regulação da Expressão Gênica , Ontologia Genética , Cabelo , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Mesoderma/citologia , Fatores de Transcrição SOXB1/biossíntese , Fatores de Transcrição SOXB1/genética , Especificidade da Espécie , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Transcriptoma , Versicanas/biossíntese , Versicanas/genética
14.
Appl Opt ; 60(11): 3031-3043, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33983197

RESUMO

The surface figure precision, weight, and dynamic performance of spaceborne primary mirrors depend on mirror structure parameters, which are usually optimized to improve the overall performance. To realize rapid multi-objective design optimization of a primary mirror with multiple apertures, a fully parameterized primary mirror structure is established. A surrogate model based on a hybrid of improved particle swarm optimization (IPSO), adaptive genetic algorithm (IAGA), and optimized back propagation neural network (IPSO-IAGA-BPNN) is developed to replace optomechanical simulation with its high computational cost. In this model, a self-adaptive inertia weight and a modified genetic operator are introduced into the particle swarm optimization (PSO) and adaptive genetic algorithm (AGA), respectively. The connection parameters of BPNN are optimized by the IPSO-IAGA algorithm for global searching capability. Further, the proposed IPSO-IAGA-BPNN, based on a rapid multi-objective optimization framework for a fully parameterized primary mirror structure, is established. Moreover, in addition to the proposed IPSO-IAGA-BPNN model, the Kriging, RSM, BPNN, GA-BPNN, PSO-BPNN, and PSO-GA-BPNN models are also analyzed as contrast models. The comparison results indicate that the predicted value obtained by IPSO-IAGA-BPNN is superior to the six other surrogate models since its mean absolute percentage error is less than 3% and its R2 is more than 0.99. Finally, we present a Pareto-optimal primary mirror design and implement it through three optimization methods. The verification results show that the proposed method predicts mirror structural performance more accurately than existing surrogate-based methods, and promotes significantly superior computational efficiency compared to the conventional integration-based method.

15.
Stem Cell Res Ther ; 12(1): 230, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845892

RESUMO

BACKGROUND: Pulmonary fibrosis (PF), the end point of interstitial lung diseases, is characterized by myofibroblast over differentiation and excessive extracellular matrix accumulation, leading to progressive organ dysfunction and usually a terminal outcome. Studies have shown that umbilical cord-derived mesenchymal stromal cells (uMSCs) could alleviate PF; however, the underlying mechanism remains to be elucidated. METHODS: The therapeutic effects of uMSC-derived extracellular vesicles (uMSC-EVs) on PF were evaluated using bleomycin (BLM)-induced mouse models. Then, the role and mechanism of uMSC-EVs in inhibiting myofibroblast differentiation were investigated in vivo and in vitro. RESULTS: Treatment with uMSC-EVs alleviated the PF and enhanced the proliferation of alveolar epithelial cells in BLM-induced mice, thus improved the life quality, including the survival rate, body weight, fibrosis degree, and myofibroblast over differentiation of lung tissue. Moreover, these effects of uMSC-EVs on PF are likely achieved by inhibiting the transforming growth factor-ß (TGF-ß) signaling pathway, evidenced by decreased expression levels of TGF-ß2 and TGF-ßR2. Using mimics of uMSC-EV-specific miRNAs, we found that miR-21 and miR-23, which are highly enriched in uMSC-EVs, played a critical role in inhibiting TGF-ß2 and TGF-ßR2, respectively. CONCLUSION: The effects of uMSCs on PF alleviation are likely achieved via EVs, which reveals a new role of uMSC-EV-derived miRNAs, opening a novel strategy for PF treatment in the clinical setting.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Fibrose Pulmonar , Animais , Bleomicina/toxicidade , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/terapia , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fatores de Crescimento Transformadores , Cordão Umbilical
16.
Adv Sci (Weinh) ; 8(7): 2002723, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854882

RESUMO

Fusarium wilt (FW) disease of cotton, caused by the fungus Fusarium oxysporum f. sp. vasinfectum (Fov), causes severe losses in cotton production worldwide. Though significant advancements have been made in development of FW-resistant Upland cotton (Gossypium hirsutum) in resistance screening programs, the precise resistance genes and the corresponding molecular mechanisms for resistance to Fov remain unclear. Herein it is reported that Fov7, a gene unlike canonical plant disease-resistance (R) genes, putatively encoding a GLUTAMATE RECEPTOR-LIKE (GLR) protein, confers resistance to Fov race 7 in Upland cotton. A single nucleotide polymorphism (SNP) (C/A) in GhGLR4.8, resulting in an amino acid change (L/I), is associated with Fov resistance. A PCR-based DNA marker (GhGLR4.8SNP(A/C) ) is developed and shown to cosegregate with the Fov resistance. CRISPR/Cas9-mediated knockout of Fov7 results in cotton lines extremely susceptible to Fov race 7 with a loss of the ability to induce calcium influx in response to total secreted proteins (SEPs) of Fov. Furthermore, coinfiltration of SEPs with GhGLR4.8A results in a hypersensitive response. This first report of a GLR-encoding gene that functions as an R gene provides a new insight into plant-pathogen interactions and a new handle to develop cotton cultivars with resistance to Fov race 7.

17.
Int J Biol Macromol ; 182: 574-582, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798583

RESUMO

In recent years, the utilization of CS-MWCNT as targeted drug carriers has attracted considerable attention. Hericium erinaceus polysaccharide (HEP) has been reported as an immunostimulant to improve immune responses. This study was focussed on developing CS-MWCNT encapsulating HEP (CS-MWCNT-HEP). Using in mice peritoneal macrophages, we found the immune response could be effectively regulated by CS-MWCNT-HEP, promoted the expression of the MHCII, CD86, F4/80 and gp38. Moreover, the mice immunized with CS-MWCNT-HEP nanoparticles significantly extended PCV2-specific IgG immune response and the levels of cytokines. The results demonstrated that CS-MWCNT-HEP may be a promising drug delivery system for immuno-enhancement.


Assuntos
Adjuvantes Imunológicos/síntese química , Polissacarídeos Fúngicos/química , Nanotubos de Carbono/química , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Antivirais/imunologia , Células Cultivadas , Circovirus/imunologia , Citocinas/imunologia , Polissacarídeos Fúngicos/imunologia , Hericium/química , Imunogenicidade da Vacina , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Endogâmicos ICR
18.
Nat Commun ; 12(1): 2206, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850125

RESUMO

Spreading depression (SD) is an intense and prolonged depolarization in the central nervous systems from insect to man. It is implicated in neurological disorders such as migraine and brain injury. Here, using an in vivo mouse model of focal neocortical seizures, we show that SD may be a fundamental defense against seizures. Seizures induced by topical 4-aminopyridine, penicillin or bicuculline, or systemic kainic acid, culminated in SDs at a variable rate. Greater seizure power and area of recruitment predicted SD. Once triggered, SD immediately suppressed the seizure. Optogenetic or KCl-induced SDs had similar antiseizure effect sustained for more than 30 min. Conversely, pharmacologically inhibiting SD occurrence during a focal seizure facilitated seizure generalization. Altogether, our data indicate that seizures trigger SD, which then terminates the seizure and prevents its generalization.


Assuntos
Depressão , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo , 4-Aminopiridina , Animais , Bicuculina/farmacologia , Tronco Encefálico , Depressão Alastrante da Atividade Elétrica Cortical , Feminino , Técnicas de Introdução de Genes , Ácido Caínico/farmacologia , Masculino , Camundongos , Sistema Nervoso , Optogenética , Penicilinas/farmacologia , Bloqueadores dos Canais de Potássio/efeitos adversos , Convulsões/patologia , Tetrodotoxina/farmacologia
19.
Indian J Ophthalmol ; 69(5): 1150-1154, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33913849

RESUMO

Purpose: Ocular suspensory ligament is an important part of the lower eyelid retractors. However, there is a scarcity of studies examining detailed en-block histologies of ocular suspensory ligaments. Methods: In this study, we included the cadavers of Chinese adults as subjects. These cadavers of Chinese adults were processed using P45 plastination techniques. The polymer resulted in transparent plastination, and the P45 sheet-plastinated sections of the lower eyelid were observed. The gross anatomy results of three Chinese adult heads (six hemifaces) were included as gross dissection data. All photographic documentation was performed via a Canon EOS 7D Mark camera. Results: The results showed that the inferior rectus muscle, inferior oblique muscle, ocular suspensory ligament, and its arcuate expansion are under the eyeball. The medial and lateral parts of the ocular suspensory ligament end at the medial and lateral canthal ligament. The middle part, a hammock-like shape, is slightly lower. The ocular suspensory ligament holds up the inferior oblique muscle, inferior rectus muscle, and the eyeball. As the inferior oblique muscle passes through the sheath of the inferior rectus, the fascia is thickened, forming the ocular suspensory ligament. The ocular suspensory ligament connects to the intermuscular septum, the inferior tarsal muscle, and the medial and lateral check ligaments. Conclusion: This study observed the ocular suspensory ligament and arcuate expansion through P45 sheet plastination for the first time and identified the distribution of the lower eyelid ligaments, thus laying the foundation for further research.


Assuntos
Plastinação , Dissecação , Pálpebras , Ligamentos , Músculos Oculomotores
20.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253815

RESUMO

Hyperinflammation is a key event that occurs with SARS-CoV-2 infection. In the lung, hyperinflammation leads to structural damage to tissue. To date, numerous lung histological studies have shown extensive alveolar damage, but there is scarce documentation of vascular inflammation in postmortem lung tissue. Here we document histopathological features and monitor the NLRP3 inflammasome in fatal cases of disease caused by SARS Cov2 (COVID-19). We posit that inflammasome formation along the vessel wall is a characteristic of lung inflammation that accompanies COVID-19 and that it is a probable candidate that drives amplification of inflammation post infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...