Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Angew Chem Int Ed Engl ; : e202202089, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35460153


Rational synthesis of hydrogen-bonded organic frameworks (HOFs) with predicted structure has been a long-term challenge. Herein, by using the efficient, simple, low-cost, and scalable mechanosynthesis, we demonstrate that reticular chemistry is applicable to HOF assemblies based on building blocks with different geometry, connectivity, and functionality. The obtained crystalline HOFs show uniform nano-sized morphology, which is challenging or unachievable for conventional solution-based methods. Furthermore, the one-pot mechanosynthesis generated a series of Pd@HOF composites with noticeably different CO oxidation activities. In situ DRIFTS studies indicate that the most efficient composite, counterintuitively, shows the weakest CO affinity to Pd sites while the strongest CO affinity to HOF matrix, revealing the vital role of porous matrix to the catalytic performance. This work paves a new avenue for rational synthesis of HOF and HOF-based composites for broad application potential.

Angew Chem Int Ed Engl ; 61(6): e202115854, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34877789


Under topological guidance, the self-assembly process based on a tetratopic porphyrin synthon results in a hydrogen-bonded organic framework (HOF) with the predicted square layers topology (sql) but unsatisfied stability. Strikingly, simply introducing a transition metal in the porphyrin center does not change the network topology but drastically causes noticeable change on noncovalent interaction, orbital overlap, and molecular geometry, therefore ultimately giving rise to a series of metalloporphyrinic HOFs with high surface area, and excellent stability (intact after being soaked in boiling water, concentrated HCl, and heated to 270 °C). On integrating both photosensitizers and catalytic sites into robust backbones, this series of HOFs can effectively catalyze the photoreduction of CO2 to CO, and their catalytic performances greatly depend on the chelated metal species in the porphyrin centers. This work enriches the library of stable functional HOFs and expands their applications in photocatalytic CO2 reduction.