Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Filtros adicionais











Intervalo de ano
1.
Plant Sci ; 286: 28-36, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31300139

RESUMO

MYB family genes act as important regulators modulating the response to abiotic stress in plants. However, much less is known about MYB proteins in cotton. Here, we found that a cotton MYB gene, GhMYB73, was induced by NaCl and abscisic acid (ABA). Silencing GhMYB73 expression in cotton increased sensitivity to salt stress. The cotyledon greening rate of Arabidopsis thaliana over-expressing GhMYB73 under NaCl or mannitol treatment was significantly enhanced during the seedling germination stage. What's more, several osmotic stress-induced genes, such as AtNHX1, AtSOS3 and AtP5CS1, were more highly induced in the over-expression lines than in wild type under salt treatment, supporting the hypothesis that GhMYB73 contributes to salinity tolerance by improving osmotic stress resistance. Arabidopsis lines over-expressing GhMYB73 had superior germination and cotyledon greening under ABA treatment, and some abiotic stress-induced genes involved in ABA pathways (AtPYL8, AtABF3, AtRD29B and AtABI5), had increased transcription levels under salt-stress conditions in these lines. Furthermore, we found that GhMYB73 physically interacts with GhPYL8 and AtPYL8, suggesting that GhMYB73 regulates ABA signaling during salinity stress response. Taken together, over-expression of GhMYB73 significantly increases tolerance to salt and ABA stress, indicating that it can potentially be used in transgenic technology approaches to improve cotton salt tolerance.


Assuntos
Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Gossypium/fisiologia , Proteínas de Plantas/genética , Estresse Salino/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Inativação Gênica , Genes myb , Gossypium/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Fatores de Transcrição/metabolismo
2.
Nat Commun ; 10(1): 2989, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278252

RESUMO

Multiple cotton genomes (diploid and tetraploid) have been assembled. However, genomic variations between cultivars of allotetraploid upland cotton (Gossypium hirsutum L.), the most widely planted cotton species in the world, remain unexplored. Here, we use single-molecule long read and Hi-C sequencing technologies to assemble genomes of the two upland cotton cultivars TM-1 and zhongmiansuo24 (ZM24). Comparisons among TM-1 and ZM24 assemblies and the genomes of the diploid ancestors reveal a large amount of genetic variations. Among them, the top three longest structural variations are located on chromosome A08 of the tetraploid upland cotton, which account for ~30% total length of this chromosome. Haplotype analyses of the mapping population derived from these two cultivars and the germplasm panel show suppressed recombination rates in this region. This study provides additional genomic resources for the community, and the identified genetic variations, especially the reduced meiotic recombination on chromosome A08, will help future breeding.

3.
Int J Mol Sci ; 19(9)2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30205477

RESUMO

The CONSTANS (CO)-like gene family has been well studied for its role in the regulation of plant flowering time. However, their role remains poorly understood in cotton. To better understand the possible roles of CO-like in cotton, we performed a comprehensive genome-wide analysis of CO-like genes in cotton. Phylogenetic tree analysis showed that CO-like genes naturally clustered into three groups. Segmental duplication and whole genome duplication (WGD), which occurred before polyploidy, were important contributors to its expansion within the At ("t" indicates tetraploid) and Dt subgenomes, particularly in Group III. Long-terminal repeat retroelements were identified as the main transposable elements accompanying 18 genes. The genotype of GhCOL12_Dt displayed low diversity; it was a candidate involved in domestication. Selection pressure analyses indicated that relaxed purifying selection might have provided the main impetus during the evolution of CO-like genes in upland cotton. In addition, the high expression in the torus and calycle indicated that CO-like genes might affect flowering. The genes from Group II, and those from Group III involved in segmental duplication or WGD, might play important roles in response to drought and salt stress. Overall, this comprehensive genome-wide study of the CO-like gene family would facilitate further detailed studies in cotton.

4.
Front Genet ; 9: 33, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467795

RESUMO

Members of the YABBY gene family, a small plant-specific family of genes, have been proposed to function in specifying abaxial cell fate. Although to date little has been learned about cotton YABBY genes, completion of the cotton genome enables a comprehensive genome-wide analysis of YABBY genes in cotton. Here, a total of 12, 12, and 23 YABBY genes were identified in Gossypium arboreum (2n = 26, A2), G. raimondii (2n = 26, D5), and G. hirsutum (2n = 4x = 52, [AD]t), respectively. Sequence analysis showed that the N-terminal zinc-finger and C-terminal YABBY domains in YABBY proteins are highly conserved among cotton, Arabidopsis, and rice. Eighty-five genes from eight sequenced species naturally clustered into five groups, and the YAB2-like group could be divided into three sub-groups, indicating that YABBYs are highly conserved among the examined species. Orthologs from the At and Dt sub-genomes (where "t" indicates tetraploid) showed good collinearity, indicating that YABBY loci are highly conserved between these two sub-genomes. Whole-genome duplication was the primary cause of upland cotton YABBY gene expansion, segmental duplication played important roles in YABBY gene expansion within the At and Dt sub-genomes, and the YAB5-like group was mainly generated by segmental duplication. The long-terminal repeat retroelements Copia and Gypsy were identified as major transposable elements accompanying the appearance of duplicated YABBY genes, suggesting that transposable element expansion might be involved in gene duplication. Selection pressure analyses using PAML revealed that relaxed purifying selection might be the main impetus during evolution of YABBY genes in the examined species. Furthermore, exon/intron pattern and motif analyses indicated that genes within the same group were significantly conserved between Arabidopsis and cotton. In addition, the expression patterns in different tissues suggest that YABBY proteins may play roles in ovule development because YABBYs are highly expressed in ovules. The expression pattern of YABBY genes showed that approximately half of the YABBYs were down-regulated under different stress treatments. Collectively, our results represent a comprehensive genome-wide study of the YABBY gene family, which should be helpful in further detailed studies on the gene function and evolution of YABBY genes in cotton.

5.
Sci China Life Sci ; 61(12): 1566-1582, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30607883

RESUMO

Brassinosteroids (BRs), which are essential phytohormones for plant growth and development, are important for cotton fiber development. Additionally, BES1 transcription factors are critical for BR signal transduction. However, cotton BES1 family genes have not been comprehensively characterized. In this study, we identified 11 BES1 genes in G. arboreum, 11 in G. raimondii, 16 in G. barbadense, and 22 in G. hirsutum. The BES1 sequences were significantly conserved in the Arabidopsis thaliana, rice, and upland cotton genomes. A total of 94 BES1 genes from 10 different plant species were divided into three clades according to the neighbor-joining and minimum-evolution methods. Moreover, the exon/intron patterns and motif distributions were highly conserved among the A. thaliana and cotton BES1 genes. The collinearity among the orthologs from the At and Dt subgenomes was estimated. Segmental duplications in the At and Dt subgenomes were primarily responsible for the expansion of the cotton BES1 gene family. Of the GhBES1 genes, GhBES1.4_At/Dt exhibited BL-induced expression and was predominantly expressed in fibers. Furthermore, Col-0/mGhBES1.4_At plants produced curled leaves with long and bent petioles. These transgenic plants also exhibited decreased hypocotyl sensitivity to brassinazole and constitutive BR induced/repressed gene expression patterns. The constitutive BR responses of the plants overexpressing mGhBES1.4_At were similar to those of the bes1-D mutant.


Assuntos
Brassinosteroides/metabolismo , Gossypium/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Sequência Conservada , Evolução Molecular , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/classificação , Gossypium/metabolismo , Hipocótilo/metabolismo , Família Multigênica , Mutação , Filogenia , Reguladores de Crescimento de Planta/metabolismo , Plantas Geneticamente Modificadas
6.
BMC Plant Biol ; 17(1): 113, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28683794

RESUMO

BACKGROUND: WUSCHEL-related homeobox (WOX) family members play significant roles in plant growth and development, such as in embryo patterning, stem-cell maintenance, and lateral organ formation. The recently published cotton genome sequences allow us to perform comprehensive genome-wide analysis and characterization of WOX genes in cotton. RESULTS: In this study, we identified 21, 20, and 38 WOX genes in Gossypium arboreum (2n = 26, A2), G. raimondii (2n = 26, D5), and G. hirsutum (2n = 4x = 52, (AD)t), respectively. Sequence logos showed that homeobox domains were significantly conserved among the WOX genes in cotton, Arabidopsis, and rice. A total of 168 genes from three typical monocots and six dicots were naturally divided into three clades, which were further classified into nine sub-clades. A good collinearity was observed in the synteny analysis of the orthologs from At and Dt (t represents tetraploid) sub-genomes. Whole genome duplication (WGD) and segmental duplication within At and Dt sub-genomes played significant roles in the expansion of WOX genes, and segmental duplication mainly generated the WUS clade. Copia and Gypsy were the two major types of transposable elements distributed upstream or downstream of WOX genes. Furthermore, through comparison, we found that the exon/intron pattern was highly conserved between Arabidopsis and cotton, and the homeobox domain loci were also conserved between them. In addition, the expression pattern in different tissues indicated that the duplicated genes in cotton might have acquired new functions as a result of sub-functionalization or neo-functionalization. The expression pattern of WOX genes under different stress treatments showed that the different genes were induced by different stresses. CONCLUSION: In present work, WOX genes, classified into three clades, were identified in the upland cotton genome. Whole genome and segmental duplication were determined to be the two major impetuses for the expansion of gene numbers during the evolution. Moreover, the expression patterns suggested that the duplicated genes might have experienced a functional divergence. Together, these results shed light on the evolution of the WOX gene family, and would be helpful in future research.


Assuntos
Genes de Plantas , Gossypium/genética , Proteínas de Homeodomínio/genética , Sequência de Aminoácidos , Sequência Conservada , Duplicação Gênica , Expressão Gênica , Gossypium/metabolismo , Proteínas de Homeodomínio/metabolismo , Família Multigênica , Filogenia , Reação em Cadeia da Polimerase , Estresse Fisiológico , Sintenia
7.
Plant Physiol Biochem ; 109: 128-136, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27669397

RESUMO

Calcium signaling regulates many developmental processes in plants. Calmodulin (CaM) is one of the most conserved calcium sensors and has a flexible conformation in eukaryotes. The molecular functions of CaM are unknown in cotton, which is a major source of natural fiber. In this study, a Gossypium hirsutum L.CaM7-like gene was isolated from upland cotton. Bioinformatics analysis indicated that the GhCaM7-like gene was highly conserved as compared with Arabidopsis AtCaM7. The GhCaM7-like gene showed a high expression level in elongating fibers. Expression of ß-glucuronidase was observed in trichomes on the stem, leaf and root in transgenic Arabidopsis plants of a PROGhCaM7-like:GUS fusion. Silencing of the GhCaM7-like gene resulted in decreased fiber length, but also caused reduction in stem height, leaf dimensions, seed length and 100-seed weight, in comparison with those of the control. Reduced expression of the GhCaM7-like gene caused decreased Ca2+ influx in cells of the leaf hypodermis and stem apex, and down-regulation of GhIQD1 (IQ67-domain containing protein), GhAnn2 (Annexins) and GhEXP2 (Expansin). These results indicate that the GhCaM7-like gene plays a vital role in calcium signaling pathways, and may regulate cotton fiber elongation and biomass production by affecting Ca2+ signatures and downstream signaling pathways of CaM.


Assuntos
Biomassa , Cálcio/metabolismo , Calmodulina/genética , Fibra de Algodão , Gossypium/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sinalização do Cálcio/genética , Calmodulina/classificação , Calmodulina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA