RESUMO
The inter-individual variations of gut microbiome contribute to the different responses toward drug therapy among populations, developing a reliable ex vivo culture method for mixed bacteria is the urgent need for predicting personal reaction to drug therapy. Unfortunately, very few attentions have been paid to the bias that could be introduced during the culture process for mixed bacteria. Here we systemically evaluated the factors that may affect the outcomes of cultured bacteria from human feces. We demonstrated that inter-individual difference of host gut microbiome was the main factor affecting the outcomes of cultured bacteria, followed by the culture medium and time point. We further optimized a new medium termed GB based on our established multi-dimensional evaluation method, which could mimic the status of in situ host gut microbiome to the highest extent. Finally, we assessed the inter-individual metabolism by host gut microbiome from 10 donors on three frequently used clinical drugs (aspirin, levodopa and doxifluridine) based on the optimized GB medium. Our results revealed obvious variation in drug metabolism by microbiome from different donors, especially levodopa and doxifluridine. This work suggested the optimized culture medium had the potential for exploring the inter-individual impacts of host gut microbiome on drug metabolism.
RESUMO
OBJECTIVE: To clarify the potential mechanism of Banxia Xiexin Decoction (BXD) on colorectal cancer (CRC) from the perspective of metabolomics. METHODS: Forty male C57BL/6 mice were randomly divided into normal control (NC), azoxymethane/dextran sulfate sodium (AOM/DSS) model, low-dose BXD (L-BXD), high-dose BXD (H-BXD) and mesalamine (MS) groups according to a random number table, 8 mice in each group. Colorectal cancer model was induced by AOM/DSS. BXD was administered daily at doses of 3.915 (L-BXD) and 15.66 g/kg (H-BXD) by gavage for consecutive 21 days, and 100 mg/kg MS was used as positive control. Following the entire modeling cycle, colon length of mice was measured and quantity of colorectal tumors were counted. The spleen and thymus index were determined by calculating the spleen/thymus weight to body weight. Inflammatory cytokine and changes of serum metabolites were analyzed by enzyme-linked immunosorbent assay kits and ultra performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q/TOF-MS), respectively. RESULTS: Notably, BXD supplementation protected against weight loss, mitigated tumor formation, and diminished histologic damage in mice treated with AOM/DSS (P<0.05 or P<0.01). Moreover, BXD suppressed expression of serum inflammatory enzymes, and improved the spleen and thymus index (P<0.05). Compared with the normal group, 102 kinds of differential metabolites were screened in the AOM/DSS group, including 48 potential biomarkers, involving 18 main metabolic pathways. Totally 18 potential biomarkers related to CRC were identified, and the anti-CRC mechanism of BXD was closely related to D-glutamine and D-glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arginine biosynthesis, nitrogen metabolism and so on. CONCLUSION: BXD exerts partial protective effects on AOM/DSS-induced CRC by reducing inflammation, protecting organism immunity ability, and regulating amino acid metabolism.
RESUMO
We here developed a sensitive and stable amplified luminescent proximity homogeneous assay (AlphaLISA) method for fast quantification of CA242 in human serum. Donor and acceptor beads modified with carboxyl groups could be coupled with CA242 antibodies after activation in the AlphaLISA method. CA242 was rapidly detected by the double antibody sandwich immunoassay. The method yielded good linearity (>0.996) and detection range (0.16-400 U/mL). The intra-assay precisions of CA242-AlphaLISA were between 3.43% and 6.81% (< 10%), and the inter-assay precisions were between 4.06% and 9.56% (< 15%). The relative recoveries ranged from 89.61% to 107.29%. Detection time for the CA242-AlphaLISA method was only 20 min. Moreover, results of CA242-AlphaLISA and time-resolved fluorescence immunoassay had satisfactory correlation and consistency (ρ = 0.9852). The method was successfully applied to the analysis of human serum samples. Meanwhile, serum CA242 has a good detection value in the identification and diagnosis of pancreatic cancer and the monitoring of disease degree. Furthermore, the proposed AlphaLISA method is expected to be an alternative to traditional detection methods, laying a good foundation for the further development of kits to detect other biomarkers in future studies.
Assuntos
Anticorpos , Medições Luminescentes , Humanos , Imunoensaio/métodos , Medições Luminescentes/métodosRESUMO
Conotoxins are widely distributed and important for studying ligand-gated ion channels. TxIB, a conotoxin consisting of 16 amino acids derived from Conus textile, is a unique selective ligand that blocks rat α6/α3ß2ß3 nAChR (IC50 = 28 nM) without affecting other rat subtypes. However, when the activity of TxIB against human nAChRs was examined, it was unexpectedly found that TxIB had a significant blocking effect on not only human α6/α3ß2ß3 nAChR but also human α6/α3ß4 nAChR, with an IC50 of 537 nM. To investigate the molecular mechanism of this species specificity and to establish a theoretical basis for drug development studies of TxIB and its analogs, different amino acid residues between human and rat α6/α3 and ß4 nAChR subunits were identified. Each residue of the human species was then substituted with the corresponding residue of the rat species via PCR-directed mutagenesis. The potencies of TxIB towards the native α6/α3ß4 nAChRs and their mutants were evaluated through electrophysiological experiments. The results showed that the IC50 of TxIB against h[α6V32L, K61R/α3]ß4L107V, V115I was 22.5 µM, a 42-fold decrease in potency compared to the native hα6/α3ß4 nAChR. Val-32 and Lys-61 in the human α6/α3 subunit and Leu-107 and Val-115 in the human ß4 subunit, together, were found to determine the species differences in the α6/α3ß4 nAChR. These results also demonstrate that the effects of species differences between humans and rats should be fully considered when evaluating the efficacy of drug candidates targeting nAChRs in rodent models.
Assuntos
Conotoxinas , Caramujo Conus , Receptores Nicotínicos , Ratos , Humanos , Animais , Especificidade da Espécie , Conotoxinas/farmacologia , Conotoxinas/química , Caramujo Conus/química , Reação em Cadeia da Polimerase , Receptores Nicotínicos/metabolismoRESUMO
Cadmium (Cd) contamination in agricultural soils has become a serious worldwide environmental problem threatening crop production and human health. Hydrogen peroxide (H2O2) is a critical second messenger in plant response to Cd exposure. However, its role in Cd accumulation in various organs of plants and the mechanistic basis of this regulation remains to be elucidated. In this study, we used electrophysiological and molecular approaches to understand how H2O2 regulates Cd uptake and translocation in rice plants. Our results showed that the pretreatment of H2O2 significantly reduced Cd uptake by rice roots, which was associated with the downregulation of OsNRAMP1 and OsNRAMP5. On the other hand, H2O2 promoted the root-to-shoot translocation of Cd, which might be attributed to the upregulation of OsHMA2 critical for Cd2+ phloem loading and the downregulation of OsHMA3 involved in the vacuolar compartmentalization of Cd2+, leading to the increased Cd accumulation in rice shoots. Furthermore, such regulatory effects of H2O2 on Cd uptake and translocation were notably amplified by the elevated level of exogenous calcium (Ca). Collectively, our results suggest that H2O2 can inhibit Cd uptake but increase root to shoot translocation through modulating the transcriptional levels of genes encoding Cd transporters, furthermore, application of Ca can amplify this effect. These findings will broaden our understanding of the regulatory mechanisms of Cd transport in rice plants and provide theoretical foundation for breeding rice for low Cd accumulation.
RESUMO
Passion fruit is an essential commercial plant in the tropics and subtropics, which has lately seen a rise in demand for high-quality fruits and large-scale production. Generally, different species of passion fruit (Passiflora sp.) are propagated by sexual reproduction. However, asexual reproduction, such as stem cuttings, grafting, or tissue culture, is also available and advantageous in many instances. Recent research on passion fruit has concentrated on improving and establishing methodologies for embryogenesis, clonal proliferation via (somatic embryos), homozygote regeneration (by anther culture), germplasm preservation (via cryopreservation), and genetic transformation. These developments have resulted in potentially new directions for asexual propagation. Even though effective embryo culture and cryogenics are now available, however the limited frequency of embryogenic callus transformation to ex-vitro seedlings still restricts the substantial clonal replication of passion fruit. Here, in this review the advancement related to biotechnological approaches and the current understanding of Passiflora tissue culture. In vitro culture, organogenesis, cryopreservation, breeding, and productivity of Passiflora will significantly improve with novel propagation approaches, which could be applied to a wider range of germplasm.
RESUMO
Pancreatic cancer (PC) is a highly malignant digestive tract tumor, with a dismal 5-year survival rate. Recently, cuproptosis was found to be copper-dependent cell death. This work aims to establish a cuproptosis-related lncRNA signature which could predict the prognosis of PC patients and help clinical decision-making. Firstly, cuproptosis-related lncRNAs were identified in the TCGA-PAAD database. Next, a cuproptosis-related lncRNA signature based on five lncRNAs was established. Besides, the ICGC cohort and our samples from 30 PC patients served as external validation groups to verify the predictive power of the risk signature. Then, the expression of CASC8 was verified in PC samples, scRNA-seq dataset CRA001160, and PC cell lines. The correlation between CASC8 and cuproptosis-related genes was validated by Real-Time PCR. Additionally, the roles of CASC8 in PC progression and immune microenvironment characterization were explored by loss-of-function assay. As showed in the results, the prognosis of patients with higher risk scores was prominently worse than that with lower risk scores. Real-Time PCR and single cell analysis suggested that CASC8 was highly expressed in pancreatic cancer and related to cuproptosis. Additionally, gene inhibition of CASC8 impacted the proliferation, apoptosis and migration of PC cells. Furthermore, CASC8 was demonstrated to impact the expression of CD274 and several chemokines, and serve as a key indicator in tumor immune microenvironment characterization. In conclusion, the cuproptosis-related lncRNA signature could provide valuable indications for the prognosis of PC patients, and CASC8 was a candidate biomarker for not only predicting the progression of PC patients but also their antitumor immune responses.
RESUMO
Objective: This meta-analysis of randomized controlled trials (RCTs) aims to evaluate the efficacy and safety of transcutaneous electrical acupoint stimulation (TEAS) for postoperative delirium (POD) in surgical patients. Methods: Based on database searches of the Wanfang, China National Knowledge Infrastructure (CNKI), VIP, Chinese Biology Medicine (CBM), PubMed, Cochrane Library, and Web of Science, relevant RCTs published before December 30, 2022, were extracted. Outcome indicators included the incidence of POD, changes in Confusion Assessment Method (CAM) scores, Visual Analogue Scale (VAS) scores, and the intraoperative consumption of anesthetics. Data were pooled and analyzed by Review Manager 5.3, and publication bias detection was conducted using Stata 17.0. Results: A meta-analysis containing 715 experimental and 717 control participants from 12 RCTs was performed. The overall results showed that TEAS had obvious superiority with a lower incidence of POD on any day during the postoperative 1 week. In subgroup analyses, the CAM scores on the third postoperative day were significantly lower in the TEAS group than in the control group (MD = -0.52, 95% CI: -1.02 to -0.03, P = 0.04), the VAS scores on the first postoperative day were significantly lower in the TEAS group than in the control group (MD = -0.19, 95% CI: -0.36 to -0.02, P = 0.03), the consumption of propofol and remifentanil were both significantly lower in the TEAS group compared with the control group (MD = -23.1, 95% CI: -37.27 to -8.94, P = 0.001; MD = -105.69, 95% CI: -174.20 to -37.19, P = 0.002). No serious adverse events of TEAS were reported in any of the referenced studies. Conclusion: TEAS has an obvious curative effect in preventing POD and pain in the earlier stage of surgical patients. It could be a promising assisted anesthesia technique in the future.
RESUMO
Studying the seed trait-stem trait-individual spatial pattern system is helpful for understanding the developmental direction of plant dynamics and populations under grazing disturbance as well as the antagonistic relationship between animals and plants, but few systematic analyses of this spatial pattern system have been carried out. Kobresia humilis is the dominant species in alpine grasslands. We studied K. humilis seed traits and their relationship with K. humilis reproductive individuals, the relationship between reproductive and vegetative stems, and the weights and spatial patterns of reproductive and nonreproductive individuals under four grazing treatments: no grazing (control), light grazing, moderate grazing and heavy grazing. We explored the relationship among seed size and seed number with reproductive stems and vegetative stems along the grazing gradient and assessed the spatial pattern changes between reproductive and nonreproductive individuals. The results showed the following: (1) Seed size increased with increasing grazing intensity, and the coefficient of variation for seed size and seed number in the heavy grazing treatment was greater than 0.6. (2) The structural equation model showed that grazing treatment had a positive effect on seed number, seed size and reproductive stem number and a negative effect on reproductive stem weight. (3) Grazing treatment did not affect the resource allocation to reproductive stems and vegetative stems per unit length of reproductive K. humilis individuals. (4) Compared with the number of reproductive individuals in the no grazing treatment, the number in the heavy grazing treatment decreased significantly, and the negative correlation between reproductive individuals and nonreproductive individuals changed from a full-scale negative correlation to a small-scale negative correlation and a large-scale positive correlation. Our study showed that grazing could activate and change the resource allocation pattern of dominant species in a grassland and have significant positive effects on reproductive stem number, reproductive stem weight, seed number and seed size. Along a grazing intensity gradient, with the increase in distance between reproductive and nonreproductive individuals, the transformation of intraspecific relationships from a negative correlation to a positive correlation is an ecological strategy conducive to population survival.
RESUMO
BACKGROUND: Citrus medica is a kind of medicinal and edible plant. It not only contains rich nutrients but also has a variety of therapeutic functions, including relieving pain, harmonizing the stomach, removing dampness, reducing phlegm, cleaning the liver, and relieving qi in traditional Chinese diagnosis. METHODS: The references of C. medica were mainly collected from the online database, such as PubMed, SciFinder, Web of Science, Google Scholar, Elsevier, Willy, SpringLink, and CNKI. The other related references were sorted by consulting books and documents. RESULTS: This review summarized and analyzed the different types of flavonoids of C. medica, including flavone-O-glycosides, flavone-C-glycosides, dihydroflavone-O-glycosides, flavonol aglycones, flavonoid aglycones, dihydroflavonoid aglycones, and bioflavonoids. The extraction methods of flavonoids were summarized in this review. Meanwhile, the multiple bioactivities of these flavonoids, including anti-atherosclerotic, hypolipidemic, anti-oxidant, hypoglycemic, and other activities. Their structure-activity relationships were reviewed and discussed in this paper. CONCLUSIONS: This review summarized the different extraction methods of diverse flavonoids with multiple bioactivities of C. medica, and their structure-activity relationships were discussed in this paper. This review may provide a valuable reference for researching and exploiting C. medica.
RESUMO
The development of low-cost RE-Fe-B sintered magnets with large La/Ce content is of great significance for the balanced utilization of rare earth (RE) resources, but it is limited by reduced magnetic properties. In this work, the coercivity (Hcj ), remanence (Br ), maximum energy product [(BH)max ], and temperature stability are simultaneously enhanced for magnets with LaCe accounting for 40 wt% of the total RE. The synergistic regulation of the REFe2 phase, Ce-valence, and grain boundaries (GBs) in RE-Fe-B sintered magnets is realized for the first time by introducing appropriate La elements. The La elements inhibit the generation of the REFe2 phase and tend to stay in the triple junctions, promoting the segregation of the RE/Cu/Ga elements and contributing to the formation of Ce/Nd/Cu/Ga-rich continuous thicker lamellar GBs, and as a result, weakening the detrimental effect on HA caused by La element substitution and enhancing Hcj . In addition, partial La atoms entering the RE2 Fe14 B phase are beneficial for improving the Br and temperature stability of the magnets and promoting the Ce3+ ion ratio, which also provides additional benefit for Br . The findings provide an effective and feasible way to co-enhance the remanence and coercivity of RE-Fe-B sintered magnets with high Ce content.
RESUMO
In plants, sexual reproduction relies on the proper development of floral organs that facilitate the successful development of fruits and seeds. Auxin responsive small auxin-up RNA (SAUR) genes play essential roles in floral organ formation and fruit development. However, little is known about the role of SAUR genes in pineapple floral organ formation and fruit development as well as stress responses. In this study, based on genome information and transcriptome datasets, 52 AcoSAUR genes were identified and grouped into 12 groups. The gene structure analysis revealed that most AcoSAUR genes did not have introns, although auxin-acting elements were abundant in the promoter region of AcoSAUR members. The expression analysis across the multiple flower and fruit development stages revealed differential expression of AcoSAUR genes, indicating a tissue and stage-specific function of AcoSAURs. Correlation analysis and pairwise comparisons between gene expression and tissue specificity identified stamen-, petal-, ovule-, and fruit-specific AcoSAURs involved in pineapple floral organs (AcoSAUR4/5/15/17/19) and fruit development (AcoSAUR6/11/36/50). RT-qPCR analysis revealed that AcoSAUR12/24/50 played positive roles in response to the salinity and drought treatment. This work provides an abundant genomic resource for functional analysis of AcoSAUR genes during the pineapple floral organs and fruit development stages. It also highlights the role of auxin signaling involved in pineapple reproductive organ growth.
Assuntos
Ananas , Ácidos Indolacéticos , Ácidos Indolacéticos/metabolismo , Frutas , Ananas/metabolismo , RNA/metabolismo , Salinidade , Secas , Filogenia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/químicaRESUMO
Hippophae rhamnoides L. (sea buckthorn), consumed as a food and health supplement worldwide, has rich nutritional and medicinal properties. Different parts of H. rhamnoides L. were used in traditional Chinese medicines for relieving cough, aiding digestion, invigorating blood circulation, and alleviating pain since ancient times. Phytochemical studies revealed a wide variety of phytonutrients, including nutritional components (proteins, minerals, vitamins, etc.) and functional components like flavonoids (1-99), lignans (100-143), volatile oils (144-207), tannins (208-230), terpenoids (231-260), steroids (261-270), organic acids (271-297), and alkaloids (298-305). The pharmacological studies revealed that some crude extracts or compounds of H. rhamnoides L. demonstrated various health benefits, such as anti-inflammatory, antioxidant, hepatoprotective, anticardiovascular disease, anticancer, hypoglycemic, hypolipidemic, neuroprotective, antibacterial activities, and their effective doses and experimental models were summarized and analyzed in this paper. The quality markers (Q-markers) of H. rhamnoides L. were predicted and analyzed based on protobotanical phylogeny, traditional medicinal properties, expanded efficacy, pharmacokinetics and metabolism, and component testability. The applications of H. rhamnoides L. in juice, wine, oil, ferment, and yogurt were also summarized and future prospects were examined in this review. However, the mechanism and structure-activity relationship of some active compounds are not clear, and quality control and potential toxicity are worth further study in the future.
Assuntos
Botânica , Hippophae , Óleos Voláteis , Hippophae/química , Compostos Fitoquímicos/farmacologia , AntioxidantesRESUMO
Antibiotic abuse in the conventional treatment of microbial infections, such as inflammatory bowel disease, induces cumulative toxicity and antimicrobial resistance which requires the development of new antibiotics or novel strategies for infection control. Crosslinker-free polysaccharide-lysozyme microspheres were constructed via an electrostatic layer-by-layer self-assembly technique by adjusting the assembly behaviors of carboxymethyl starch (CMS) on lysozyme and subsequently outer cationic chitosan (CS) deposition. The relative enzymatic activity and in vitro release profile of lysozyme under simulated gastric and intestinal fluids were investigated. The highest loading efficiency of the optimized CS/CMS-lysozyme micro-gels reached 84.9% by tailoring CMS/CS content. The mild particle preparation procedure retained relative activity of 107.4% compared with free lysozyme, and successfully enhanced the antibacterial activity against E. coli due to the superposition effect of CS and lysozyme. Additionally, the particle system showed no toxicity to human cells. In vitro digestibility testified that almost 70% was recorded in the simulated intestinal fluid within 6 h. Results demonstrated that the cross-linker-free CS/CMS-lysozyme microspheres could be a promising antibacterial additive for enteric infection treatment due to its highest effective dose (573.08 µg/mL) and fast release at the intestinal tract.
RESUMO
Introduction: Nurses' life satisfaction exerts a positive impact on their professional careers, and it seriously affects their physical and mental health. Low life satisfaction has become a key factor in the global shortage of nurses. Emotional intelligence may protect nurses from negative emotions that can affect the care they provide, as well as their life satisfaction. In this study, we aims to explore the impact of emotional intelligence on life satisfaction, and even verify the chain mediating effect of self-efficacy and resilience on this relationship among Chineses nurses. Method: The Emotional Intelligence Scale, the General Self, Efficacy Scale, the Connor-Davidson Resilience Scale, and the Satisfaction with Life Scale were used to survey 709 nurses in southwest China. To analyze mediating effects, SPSS 26.0 and Process V3.3 were used for statistical processing. Result: Emotional intelligence positively predicted life satisfaction. Meanwhile, it was also found that emotional intelligence and life satisfaction were continuously mediated by self-efficacy and resilience, and the indirect effect value was 0.033, accounting for 17.37%. Conclusion: This study reveals how emotional intelligence affects nurses' life satisfaction. The results of this study have certain implications for nurses to better balance their career and life. Nursing managers should provide nurses with a favorable working environment from the perspective of positive psychology, improve their sense of self-efficacy and resilience, ultimately improve their life satisfaction.
RESUMO
Ipomoeapes-caprae (L.) (IPC) is a common species in tropical and subtropical coastal areas and one of the world's most widely distributed plants. It has attracted researchers for its outstanding biological, ecological and medicinal values. It has been reported that the genetic diversity of IPCs located on different continents is very low because of their frequent gene flow. During the long journey of evolution, every aspect of the plant morphologies has evolved to the best adaptivity to the environment, seeking their survival and progeny expansion. However, the fundamental genetic characteristics of IPC and how their seed adapted to the success of population expansion remain unknown. In this study, the fundamental genetic characteristics, including the genome size and the chromosome number of IPC, were investigated. The results showed that IPC's genome size is approximately 0.98-1.08 GB, and the chromosome number is 2n=30, providing the basic information for further genome analysis. In order to decipher the long-distance dispersal secret of this species, the fruit and seed developments, seed morphology, and seed germination were extensively investigated and described. The results showed an exquisite adaptive mechanism of IPC seeds to fulfil the population expansion via ocean currents. The large cavity inside the seeds and the dense tomenta on the surface provide the buoyancy force for the seeds to float on the seawater. The hard seed coats significantly obstructed the water absorption, thus preventing the seed from germination during the dispersal. Meanwhile, the fully developed embryos of IPC also have physiological dormancy. The physical and physiological characteristics of IPC seeds provide insight into the mechanism of their long-distance dispersal across the oceans. Moreover, based on morphological observation and semi-section microscopy, the development pattern of IPC glander trichomes was described, and their physiological functions were also discussed.
RESUMO
Immunosuppression is associated with long-term mortality during sepsis. However, the underlying mechanism of immunosuppression remains poorly understood. Toll-like receptor 2 (TLR2) contributes to sepsis pathogenesis. We sought to determine the role of TLR2 in immunosuppression in the spleen during polymicrobial sepsis. Using an experimental model of polymicrobial sepsis induced by cecal ligation and puncture (CLP), we measured the expression of inflammatory cytokines and chemokines in spleen 6 and 24 h after CLP to evaluate the immune response, and compared the expression of inflammatory cytokines and chemokines, apoptosis, and intracellular ATP production in spleen of wild-type (WT) and TLR2-deficient (TLR2-/-) mice 24 h after CLP. We found that pro-inflammatory cytokines and chemokines, such as TNF-α and IL-1ß peaked 6 h after CLP, while IL-10, an anti-inflammatory cytokine, peaked 24 h after CLP in the spleen. At this later time point, TLR2-/- mice presented decreased levels of IL-10 and decreased caspase 3 activation but no significant difference in intracellular ATP production in spleen compared to WT mice. Our data imply that TLR2 has a pronounced effect on sepsis-induced immunosuppression in spleen.
RESUMO
Owing to convenient water access, riparian areas are often sites for intensive livestock breeding industries and agriculture, which can increase the spread of antibiotic resistance genes (ARGs). However, studies on ARG profiles in riparian soils are limited and there is little information regarding the factors influencing ARGs at a watershed scale. Here, we analyzed ARG profiles, bacterial communities, and soil properties in riparian soils under different land-use types. A total of 124 ARGs and 25 mobile genetic elements (MGEs) were detected in the riparian soils, which covered almost all major classes of antibiotics. Non-metric multidimensional scaling analysis showed that both the distance to the water reservoir and land-use types played important roles in shaping ARG profiles in riparian soils at a watershed scale. Downstream soils harbored three times the abundance of ARGs compared with upstream and midstream soils. Distance-decay analysis indicated that the similarity of ARG profiles and bacterial community composition decreased significantly with the increase of geographical distance (p < 0.001). When taking the land-use type into consideration, the relative abundance and diversity of ARGs and MGEs in orchard and farmland soils were significantly higher than those in wasteland soils. This indicated that anthropogenic activities can also affect ARG patterns in riparian soils. MGE abundance was identified as major driving factors of ARG profiles. In addition, among all the examined soil properties, soil pH was found to be more important than nutrients and organic carbon in shaping ARG profiles. Our findings provide valuable data on ARG distribution in riparian soils in a reservoir catchment and highlight downstream soils is crucial for ensuring water source security.
Assuntos
Genes Bacterianos , Solo , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Água , Antibacterianos/farmacologia , Microbiologia do Solo , Concentração de Íons de HidrogênioRESUMO
In most flowering plants, the female germline is initiated in the subepidermal L2 layer of ovule primordia forming a single megaspore mother cell (MMC). How signaling from the L1 (epidermal) layer could contribute to the gene regulatory network (GRN) restricting MMC formation to a single cell is unclear. We show that EPIDERMAL PATTERNING FACTOR-like (EPFL) peptide ligands are expressed in the L1 layer, together with their ERECTA family (ERf) receptor kinases, to control female germline specification in Arabidopsis thaliana. EPFL-ERf dependent signaling restricts multiple subepidermal cells from acquiring MMC-like cell identity by activating the expression of the major brassinosteroid (BR) receptor kinase BRASSINOSTEROID INSENSITIVE 1 and the BR-responsive transcription factor BRASSINOZOLE RESISTANT 1 (BZR1). Additionally, BZR1 coordinates female germline specification by directly activating the expression of a nucleolar GTP-binding protein, NUCLEOSTEMIN-LIKE 1 (NSN1), which is expressed in early-stage ovules excluding the MMC. Mutants defective in this GRN form multiple MMCs resulting in a strong reduction of seed set. In conclusion, we uncovered a ligand/receptor-like kinase-mediated signaling pathway acting upstream and coordinating BR signaling via NSN1 to restrict MMC differentiation to a single subepidermal cell.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Transdução de Sinais/genética , Proteínas de Transporte/metabolismo , Células Germinativas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Ligação a DNA/metabolismoRESUMO
OBJECTIVE: The aim of the work described here was to develop a non-invasive tool based on the radiomics and ultrasound features of automated breast volume scanning (ABVS), clinicopathological factors and serological indicators to evaluate axillary lymph node metastasis (ALNM) in patients with early invasive breast cancer (EIBC). METHODS: We retrospectively analyzed 179 ABVS images of patients with EIBC at a single center from January 2016 to April 2022 and divided the patients into training and validation sets (ratio 8:2). Additionally, 97 ABVS images of patients with EIBC from a second center were enrolled as the test set. The radiomics signature was established with the least absolute shrinkage and selection operator. Significant ALNM predictors were screened using univariate logistic regression analysis and further combined to construct a nomogram using the multivariate logistic regression model. The receiver operating characteristic curve assessed the nomogram's predictive performance. DISCUSSION: The constructed radiomics nomogram model, including ABVS radiomics signature, ultrasound assessment of axillary lymph node (ALN) status, convergence sign and erythrocyte distribution width (standard deviation), achieved moderate predictive performance for risk probability evaluation of ALNs in patients with EIBC. Compared with ultrasound, the nomogram model was able to provide a risk probability evaluation tool not only for the ALNs with positive ultrasound features but also for micrometastatic ALNs (generally without positive ultrasound features), which benefited from the radiomics analysis of multi-sourced data of patients with EIBC. CONCLUSION: This ABVS-based radiomics nomogram model is a pre-operative, non-invasive and visualized tool that can help clinicians choose rational diagnostic and therapeutic protocols for ALNM.