Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(7): 2622-2637, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33560127

RESUMO

Melanin is ubiquitous in living organisms across different biological kingdoms of life, making it an important, natural biomaterial. Its presence in nature from microorganisms to higher animals and plants is attributed to the many functions of melanin, including pigmentation, radical scavenging, radiation protection, and thermal regulation. Generally, melanin is classified into five types-eumelanin, pheomelanin, neuromelanin, allomelanin, and pyomelanin-based on the various chemical precursors used in their biosynthesis. Despite its long history of study, the exact chemical makeup of melanin remains unclear, and it moreover has an inherent diversity and complexity of chemical structure, likely including many functions and properties that remain to be identified. Synthetic mimics have begun to play a broader role in unraveling structure and function relationships of natural melanins. In the past decade, polydopamine, which has served as the conventional form of synthetic eumelanin, has dominated the literature on melanin-based materials, while the synthetic analogues of other melanins have received far less attention. In this perspective, we will discuss the synthesis of melanin materials with a special focus beyond polydopamine. We will emphasize efforts to elucidate biosynthetic pathways and structural characterization approaches that can be harnessed to interrogate specific structure-function relationships, including electron paramagnetic resonance (EPR) and solid-state nuclear magnetic resonance (ssNMR) spectroscopy. We believe that this timely Perspective will introduce this class of biopolymer to the broader chemistry community, where we hope to stimulate new opportunities in novel, melanin-based poly-functional synthetic materials.

2.
Biochem Biophys Res Commun ; 540: 42-50, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445109

RESUMO

Liver sinusoidal endothelial cells (LSECs), which play a very critical role in liver regeneration, function in hypoxic environments, but few studies have elucidated the specific mechanism. As a hypoxia-sensitive gene, Sentrin/SUMO-specific protease 1(SENP1) is upregulated in solid tumors due to hypoxia and promotes tumor proliferation. We speculate that LSECs may upregulate SENP1 in hypoxic environments and that SENP1 may act on downstream genes to allow the cells to adapt to the hypoxic environment. To elucidate the reasons for the survival of LSECs under hypoxia, we designed experiments to explore the possible mechanism. First, we cultured murine LSECs in hypoxic conditions for a certain time (24 h and 72 h), and then, we observed that the proliferation ability of the hypoxia group was higher than that of the normoxia group, and the number of unique fenestrae of the LSECs in the hypoxia group was more than that of the LSECs in the normoxia group. Then, we divided the LSECs into several groups for hypoxic culture for time points (6 h, 12 h, 24 h, 36 h, and 72 h), and we found that the expression of SENP1, HIF-1α and VEGF was significantly upregulated. Then, we silenced SENP1 and HIF-1α with si-SENP1 and si-HIF-1α, respectively. SENP1, HIF-1α and VEGF were significantly downregulated, as determined by RT-PCR, WB and ELISA. Unexpectedly, the proliferation activity of the LSECs decreased and the fenestrae disappeared more in the si-SENP1 and si-HIF-1α groups than in the control group. It is concluded that LSECs cultured under hypoxic conditions may maintain fenestrae and promote proliferation through the SENP1/HIF-1α/VEGF signaling axis, thereby adapting to the hypoxic environment.

3.
J Am Chem Soc ; 142(29): 12802-12810, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32638590

RESUMO

Melanins are a family of heterogeneous biopolymers found ubiquitously across plant, animal, bacterial, and fungal kingdoms where they act variously as pigments and as radiation protection agents. There exist five multifunctional yet structurally and biosynthetically incompletely understood varieties of melanin: eumelanin, neuromelanin, pyomelanin, allomelanin, and pheomelanin. Although eumelanin and allomelanin have been the focus of most radiation protection studies to date, some research suggests that pheomelanin has a better absorption coefficient for X-rays than eumelanin. We reasoned that if a selenium enriched melanin existed, it would be a better X-ray protector than the sulfur-containing pheomelanin because the X-ray absorption coefficient is proportional to the fourth power of the atomic number (Z). Notably, selenium is an essential micronutrient, with the amino acid selenocysteine being genetically encoded in 25 natural human proteins. Therefore, we hypothesize that selenomelanin exists in nature, where it provides superior ionizing radiation protection to organisms compared to known melanins. Here we introduce this novel selenium analogue of pheomelanin through chemical and biosynthetic routes using selenocystine as a feedstock. The resulting selenomelanin is a structural mimic of pheomelanin. We found selenomelanin effectively prevented neonatal human epidermal keratinocytes (NHEK) from G2/M phase arrest under high-dose X-ray irradiation. Provocatively, this beneficial role of selenomelanin points to it as a sixth variety of yet to be discovered natural melanin.

4.
Cell Death Dis ; 11(7): 545, 2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32683410

RESUMO

Skeletal muscle atrophy is one of the clinical symptoms of myotonic dystrophy type 1 (DM1). A decline in skeletal muscle regeneration is an important contributor to muscle atrophy. Skeletal muscle satellite cells (SSCs) drive skeletal muscle regeneration. Increased autophagy can reduce the proliferative capacity of SSCs, which plays an important role in the early regeneration of damaged skeletal muscle in DM1. Discovering new ways to restore SSC proliferation may aid in the identification of new therapeutic targets for the treatment of skeletal muscle atrophy in DM1. In the pathogenesis of DM1, muscleblind-like 1 (MBNL1) protein is generally considered to form nuclear RNA foci and disturb the RNA-splicing function. However, the role of MBNL1 in SSC proliferation in DM1 has not been reported. In this study, we obtained SSCs differentiated from normal DM1-04-induced pluripotent stem cells (iPSCs), DM1-03 iPSCs, and DM1-13-3 iPSCs edited by transcription activator-like (TAL) effector nucleases (TALENs) targeting CTG repeats, and primary SSCs to study the pathogenesis of DM1. DM1 SSC lines and primary SSCs showed decreased MBNL1 expression and elevated autophagy levels. However, DM1 SSCs edited by TALENs showed increased cytoplasmic distribution of MBNL1, reduced levels of autophagy, increased levels of phosphorylated mammalian target of rapamycin (mTOR), and improved proliferation rates. In addition, we confirmed that after MBNL1 overexpression, the proliferative capability of DM1 SSCs and the level of phosphorylated mTOR were enhanced, while the autophagy levels were decreased. Our data also demonstrated that the proliferative capability of DM1 SSCs was enhanced after autophagy was inhibited by overexpressing mTOR. Finally, treatment with rapamycin (an mTOR inhibitor) was shown to abolish the increased proliferation capability of DM1 SSCs due to MBNL1 overexpression. Taken together, these data suggest that MBNL1 reverses the proliferation defect of SSCs in DM1 by inhibiting autophagy via the mTOR pathway.

5.
Int J Cancer ; 145(3): 662-670, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30653265

RESUMO

Early tumor recurrence after curative surgical resection poses a great challenge to the clinical management of hepatocellular carcinoma (HCC). We conducted whole genome expression microarrays on 64 primary HCC tumors with clinically defined recurrence status and cross-referenced with RNA-seq data from 18 HCC tumors in the Cancer Genome Atlas project. We identified a 77-gene signature, which is significantly associated with early recurrent (ER) HCC tumors. This ER-associated signature shows significant enrichment in genes involved in cell cycle pathway. We performed receiver operating characteristic (ROC) analysis to evaluate the prognostic biomarker potential of these 77 genes and Pearson correlation analysis to identify 11 close clusters. The one gene with the best area under the ROC curve in each of the 11 clusters was selected for validation using reverse-transcription quantitative PCR in an independent cohort of 24 HCC tumors. NUF2 was identified to be the minimal biomarker sufficient to discriminate ER tumors from LR tumors. NUF2 in combination with liver cirrhosis could significantly improve the detection of ER tumors with an AUROC of 0.82 and 0.85 in the test and validation cohort, respectively. In conclusion, NUF2 in combination with liver cirrhosis is a promising prognostic biomarker for early HCC recurrence.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias Hepáticas/metabolismo , Recidiva Local de Neoplasia/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Estudos de Coortes , Feminino , Humanos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Valor Preditivo dos Testes , Taxa de Sobrevida , Transcriptoma
6.
Acta Crystallogr C Struct Chem ; 74(Pt 11): 1459-1468, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30398202

RESUMO

An unexpected global disorder (co-existing rotational disorder and glide disorder) has been observed during an X-ray investigation of the crystal structure of (E)-[1-(biphenyl-4-yl)ethylidene]hydrazine, C14H14N2, at room temperature. When the temperature decreases to 273 K, the disorder disappears, but the quality of the data set is low. The diffraction data were collected again at 110 K. Differential scanning calorimetry (DSC) analysis and polarizing-microscopy experiments, as well as a fourth set of single-crystal data collected at 283 K, proved that the order-disorder transformation occurs continuously. The analyses of these crystal structures and full-range relaxed potential energy surface scans showed that this kind of global disorder is not very difficult to achieve inside the crystal. Experimental and theoretical studies via UV-Vis and fluorescence spectra impart an understanding on the prediction methods of optical properties, which are essential for the rational design of biphenyl-based materials with pre-defined properties.

7.
J Am Chem Soc ; 140(11): 4085-4091, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29489362

RESUMO

Despite much attention, the path of the highly consequential primary proton transfer in the light-driven ion pump bacteriorhodopsin (bR) remains mysterious. Here we use DNP-enhanced magic angle spinning (MAS) NMR to study critical elements of the active site just before the Schiff base (SB) deprotonates (in the L intermediate), immediately after the SB has deprotonated and Asp85 has become protonated (in the Mo intermediate), and just after the SB has reprotonated and Asp96 has deprotonated (in the N intermediate). An essential feature that made these experiments possible is the 75-fold signal enhancement through DNP. 15N(SB)-1H correlations reveal that the newly deprotonated SB is accepting a hydrogen bond from an alcohol and 13C-13C correlations show that Asp85 draws close to Thr89 before the primary proton transfer. Concurrently, 15N-13C correlations between the SB and Asp85 show that helices C and G draw closer together just prior to the proton transfer and relax thereafter. Together, these results indicate that Thr89 serves to relay the SB proton to Asp85 and that creating this pathway involves rapprochement between the C and G helices as well as chromophore torsion.


Assuntos
Bacteriorodopsinas/química , Bombas de Íon/química , Luz , Ressonância Magnética Nuclear Biomolecular , Bacteriorodopsinas/isolamento & purificação , Bacteriorodopsinas/metabolismo , Halobacterium salinarum/química , Halobacterium salinarum/citologia , Halobacterium salinarum/metabolismo , Bombas de Íon/metabolismo
8.
World J Gastroenterol ; 23(44): 7830-7839, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29209124

RESUMO

AIM: To demonstrate that specific bacteria might release bacterial extracellular DNA (eDNA) to exert immunomodulatory functions in the mouse small intestine. METHODS: Extracellular DNA was extracted using phosphate buffered saline with 0.5 mmol/L dithiothreitol combined with two phenol extractions. TOTO-1 iodide, a cell-impermeant and high-affinity nucleic acid stain, was used to confirm the existence of eDNA in the mucus layers of the small intestine and colon in healthy Male C57BL/6 mice. Composition difference of eDNA and intracellular DNA (iDNA) of the small intestinal mucus was studied by Illumina sequencing and terminal restriction fragment length polymorphism (T-RFLP). Stimulation of cytokine production by eDNA was studied in RAW264.7 cells in vitro. RESULTS: TOTO-1 iodide staining confirmed existence of eDNA in loose mucus layer of the mouse colon and thin surface mucus layer of the small intestine. Illumina sequencing analysis and T-RFLP revealed that the composition of the eDNA in the small intestinal mucus was significantly different from that of the iDNA of the small intestinal mucus bacteria. Illumina Miseq sequencing showed that the eDNA sequences came mainly from Gram-negative bacteria of Bacteroidales S24-7. By contrast, predominant bacteria of the small intestinal flora comprised Gram-positive bacteria. Both eDNA and iDNA were added to native or lipopolysaccharide-stimulated Raw267.4 macrophages, respectively. The eDNA induced significantly lower tumor necrosis factor-α/interleukin-10 (IL-10) and IL-6/IL-10 ratios than iDNA, suggesting the predominance for maintaining immune homeostasis of the gut. CONCLUSION: Our results indicated that degraded bacterial genomic DNA was mainly released by Gram-negative bacteria, especially Bacteroidales-S24-7 and Stenotrophomonas genus in gut mucus of mice. They decreased pro-inflammatory activity compared to total gut flora genomic DNA.


Assuntos
Colo/microbiologia , DNA Bacteriano/imunologia , Microbioma Gastrointestinal/fisiologia , Bactérias Gram-Negativas/fisiologia , Mucosa Intestinal/microbiologia , Intestino Delgado/microbiologia , Animais , Colo/imunologia , Colo/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polimorfismo de Fragmento de Restrição
9.
J Phys Chem B ; 121(34): 8132-8141, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28762740

RESUMO

A principal advantage of magic angle spinning (MAS) NMR spectroscopy lies in its ability to determine molecular structure in a noninvasive and quantitative manner. Accordingly, MAS should be widely applicable to studies of the structure of active pharmaceutical ingredients (API) and formulations. However, the low sensitivity encountered in spectroscopy of natural abundance APIs present at low concentration has limited the success of MAS experiments. Dynamic nuclear polarization (DNP) enhances NMR sensitivity and can be used to circumvent this problem provided that suitable paramagnetic polarizing agent can be incorporated into the system without altering the integrity of solid dosages. Here, we demonstrate that DNP polarizing agents can be added in situ during the preparation of amorphous solid dispersions (ASDs) via spray drying and hot-melt extrusion so that ASDs can be examined during drug development. Specifically, the dependence of DNP enhancement on sample composition, radical concentration, relaxation properties of the API and excipients, types of polarizing agents and proton density, has been thoroughly investigated. Optimal enhancement values are obtained from ASDs containing 1% w/w radical concentration. Both polarizing agents TOTAPOL and AMUPol provided reasonable enhancements. Partial deuteration of the excipient produced 3× higher enhancement values. With these parameters, an ASD containing posaconazole and vinyl acetate yields a 32-fold enhancement which presumably results in a reduction of NMR measurement time by ∼1000. This boost in signal intensity enables the full assignment of the natural abundance pharmaceutical formulation through multidimensional correlation experiments.


Assuntos
Espectroscopia de Ressonância Magnética , Preparações Farmacêuticas/química , Clotrimazol/química , Óxidos N-Cíclicos/química , Composição de Medicamentos , Propanóis/química , Prótons , Triazóis/química
10.
J Phys Chem B ; 121(19): 4997-5006, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28437077

RESUMO

In DNP MAS NMR experiments at ∼80-110 K, the structurally important -13CH3 and -15NH3+ signals in MAS spectra of biological samples disappear due to the interference of the molecular motions with the 1H decoupling. Here we investigate the effect of these dynamic processes on the NMR line shapes and signal intensities in several typical systems: (1) microcrystalline APG, (2) membrane protein bR, (3) amyloid fibrils PI3-SH3, (4) monomeric alanine-CD3, and (5) the protonated and deuterated dipeptide N-Ac-VL over 78-300 K. In APG, the three-site hopping of the Ala-Cß peak disappears completely at 112 K, concomitant with the attenuation of CP signals from other 13C's and 15N's. Similarly, the 15N signal from Ala-NH3+ disappears at ∼173 K, concurrent with the attenuation in CP experiments of other 15N's as well as 13C's. In bR and PI3-SH3, the methyl groups are attenuated at ∼95 K, while all other 13C's remain unaffected. However, both systems exhibit substantial losses of intensity at ∼243 K. Finally, with spectra of Ala and N-Ac-VL, we show that it is possible to extract site specific dynamic data from the temperature dependence of the intensity losses. Furthermore, 2H labeling can assist with recovering the spectral intensity. Thus, our study provides insight into the dynamic behavior of biological systems over a wide range of temperatures, and serves as a guide to optimizing the sensitivity and resolution of structural data in low temperature DNP MAS NMR spectra.


Assuntos
Amiloide/química , Bacteriorodopsinas/química , Dipeptídeos/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/química , Temperatura , Alanina/química
11.
Am J Rhinol Allergy ; 31(1): 51-55, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28234155

RESUMO

BACKGROUND: Sinonasal inverted papilloma (SNIP) is noted for its high rate of recurrence and malignant transformation. Although many clinical studies have demonstrated the effectiveness of the endoscopic approach for SNIP, the surgical strategy has been the subject of much debate. OBJECTIVE: To evaluate the effectiveness of the endoscopic endonasal approach in SNIP. METHODS: A systematic review of patients with a diagnosis of SNIP and who had surgery at our institution from June 2005 to March 2013 was performed. All the patients who had postoperative follow-up for >2 years were enrolled. Each case was categorized into one of four stages as reported by Krouse. Demographic and tumor date, operative approach, complications, and recurrence rates were collected. RESULTS: A total of 125 patients were included in this study. There were 17 patients in stage 1, 40 in stage 2, 57 in stage 3, and 11 in stage 4. The overall recurrence rate was 8.0%. There was no significant difference in recurrence among the stages (all p > 0.05). Recurrence after endoscopic endonasal approach (8.4%) and a combined endoscopic and open exposure procedure (5.6%) were not significantly different (p > 0.05). The recurrence rate was significantly (p < 0.05) higher in patients with revision (15.6%) than in patients in the primary cases (3.8%). A common site of tumor origin was recorded to be from the maxillary sinus (40.2%). Twenty percent of recurrences were observed up to 5 years after surgery. CONCLUSION: Endoscopic surgery may be preferred for treating SNIP. The elevated recurrence rate after revision emphasized the significance of the first surgery. We encourage a follow-up period of at least 5 years.


Assuntos
Endoscopia , Seio Maxilar/cirurgia , Papiloma Invertido/cirurgia , Neoplasias dos Seios Paranasais/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Papiloma Invertido/patologia , Neoplasias dos Seios Paranasais/patologia , Estudos Retrospectivos , Resultado do Tratamento
12.
J Am Chem Soc ; 138(30): 9663-74, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27355699

RESUMO

Amyloid-ß (Aß) is a 39-42 residue protein produced by the cleavage of the amyloid precursor protein (APP), which subsequently aggregates to form cross-ß amyloid fibrils that are a hallmark of Alzheimer's disease (AD). The most prominent forms of Aß are Aß1-40 and Aß1-42, which differ by two amino acids (I and A) at the C-terminus. However, Aß42 is more neurotoxic and essential to the etiology of AD. Here, we present an atomic resolution structure of a monomorphic form of AßM01-42 amyloid fibrils derived from over 500 (13)C-(13)C, (13)C-(15)N distance and backbone angle structural constraints obtained from high field magic angle spinning NMR spectra. The structure (PDB ID: 5KK3 ) shows that the fibril core consists of a dimer of Aß42 molecules, each containing four ß-strands in a S-shaped amyloid fold, and arranged in a manner that generates two hydrophobic cores that are capped at the end of the chain by a salt bridge. The outer surface of the monomers presents hydrophilic side chains to the solvent. The interface between the monomers of the dimer shows clear contacts between M35 of one molecule and L17 and Q15 of the second. Intermolecular (13)C-(15)N constraints demonstrate that the amyloid fibrils are parallel in register. The RMSD of the backbone structure (Q15-A42) is 0.71 ± 0.12 Å and of all heavy atoms is 1.07 ± 0.08 Å. The structure provides a point of departure for the design of drugs that bind to the fibril surface and therefore interfere with secondary nucleation and for other therapeutic approaches to mitigate Aß42 aggregation.


Assuntos
Peptídeos beta-Amiloides/química , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Agregados Proteicos , Estrutura Secundária de Proteína
13.
J Am Chem Soc ; 137(47): 14877-86, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26218479

RESUMO

We report a magic angle spinning (MAS) NMR structure of the drug-resistant S31N mutation of M218-60 from Influenza A. The protein was dispersed in diphytanoyl-sn-glycero-3-phosphocholine lipid bilayers, and the spectra and an extensive set of constraints indicate that M218-60 consists of a dimer of dimers. In particular, ∼280 structural constraints were obtained using dipole recoupling experiments that yielded well-resolved (13)C-(15)N, (13)C-(13)C, and (1)H-(15)N 2D, 3D, and 4D MAS spectra, all of which show cross-peak doubling. Interhelical distances were measured using mixed (15)N/(13)C labeling and with deuterated protein, MAS at ωr/2π = 60 kHz, ω0H/2π = 1000 MHz, and (1)H detection of methyl-methyl contacts. The experiments reveal a compact structure consisting of a tetramer composed of four transmembrane helices, in which two opposing helices are displaced and rotated in the direction of the membrane normal relative to a four-fold symmetric arrangement, yielding a two-fold symmetric structure. Side chain conformations of the important gating and pH-sensing residues W41 and H37 are found to differ markedly from four-fold symmetry. The rmsd of the structure is 0.7 Å for backbone heavy atoms and 1.1 Å for all heavy atoms. This two-fold symmetric structure is different from all of the previous structures of M2, many of which were determined in detergent and/or with shorter constructs that are not fully active. The structure has implications for the mechanism of H(+) transport since the distance between His and Trp residues on different helices is found to be short. The structure also exhibits two-fold symmetry in the vicinity of the binding site of adamantyl inhibitors, and steric constraints may explain the mechanism of the drug-resistant S31N mutation.


Assuntos
Proteínas da Matriz Viral/química , Dimerização , Bicamadas Lipídicas , Conformação Proteica
14.
J Phys Chem B ; 119(5): 1787-92, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25588051

RESUMO

We demonstrate application of precise adiabatic vacuum calorimetry to observation of phase transition in the tripeptide L-alanyl-L-prolyl-glycine monohydrate (APG) from 6 to 320 K and report the standard thermodynamic properties of the tripeptide in the entire range. Thus, the heat capacity of APG was measured by adiabatic vacuum calorimetry in the above temperature range. The tripeptide exhibits a reversible first-order solid-to-solid phase transition characterized by strong thermal hysteresis. We report the standard thermodynamic characteristics of this transition and show that differential scanning calorimetry can reliably characterize the observed phase transition with <5 mg of the sample. Additionally, the standard entropy of formation from the elemental substances and the standard entropy of hypothetical reaction of synthesis from the amino acids at 298.15 K were calculated for the studied tripeptide.


Assuntos
Oligopeptídeos/química , Sequência de Aminoácidos , Varredura Diferencial de Calorimetria , Temperatura Baixa , Oligopeptídeos/síntese química , Transição de Fase , Termodinâmica
15.
Eur J Drug Metab Pharmacokinet ; 40(3): 355-61, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24924311

RESUMO

Linezolid is effective on many resistant organisms for the treatment of severe infections in burns. However, its pharmacokinetics was difficult to predict after major burns. The study aimed to describe the pharmacokinetic properties of linezolid administered intravenously at a dose of 10 mg/kg in severely burned rabbits in comparison to that in non-burns. Linezolid concentrations were quantitatively analyzed by high-performance liquid chromatography. The direct consequence of the physiological changes after burn injury was lower plasma linezolid concentrations. In addition, burn injury induced significantly altered pharmacokinetic parameters with higher inter-individual variability. The distribution volume and clearance rate were increased (2.88 vs. 1.92 L/kg, P > 0.05; 0.28 vs. 0.20 L/h/kg, P < 0.05), and the AUC0-∞ was significantly lower (37.99 vs. 51.47 mg/L h, P < 0.05). However, there were almost no changes in half-life and mean residence time. These results suggested that therapeutic drug monitoring and dosage individualization of linezolid in patients with severe burns were necessary.


Assuntos
Antibacterianos/farmacocinética , Queimaduras/metabolismo , Linezolida/farmacocinética , Administração Intravenosa/métodos , Animais , Área Sob a Curva , Queimaduras/microbiologia , Relação Dose-Resposta a Droga , Monitoramento de Medicamentos/métodos , Meia-Vida , Taxa de Depuração Metabólica/efeitos dos fármacos , Coelhos
16.
J Nat Prod ; 77(10): 2161-9, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25275213

RESUMO

Eleven new sesquiterpenoids, wenyujinins A-K (1-11), and a new monoterpenoid, wenyujinin L (12), were isolated from the rhizomes of Curcuma wenyujin. Their structures and relative configurations were elucidated using 1D and 2D NMR, X-ray crystallographic analysis, and HRESIMS data. The absolute configurations of 1, 2, 3, 4, 6, 8, 9, and 10 were determined by comparison of the experimental and calculated ECD spectra. The absolute configuration of 5 was determined from the ECD data of the [Rh2(OCOCF3)4] complex, whereas those of 7 and 12 were determined from the ECD spectra of the compounds alone. Compounds 7 and 7a strongly inhibited the induction of NO production by LPS, with IC50 values of 7.6 and 8.5 µM, respectively. Compounds 6 and 10 moderately inhibited NO production with IC50 values of 47.7 and 48.6 µM, respectively.


Assuntos
Curcuma/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Monoterpenos/isolamento & purificação , Monoterpenos/farmacologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Rizoma/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Animais , Cristalografia por Raios X , Medicamentos de Ervas Chinesas/química , Concentração Inibidora 50 , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos , Estrutura Molecular , Monoterpenos/química , Óxido Nítrico/biossíntese , Ressonância Magnética Nuclear Biomolecular , Sesquiterpenos/química
17.
J Magn Reson ; 240: 113-23, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24394190

RESUMO

The effects of nuclear signal quenching induced by the presence of a paramagnetic polarizing agent are documented for conditions used in magic angle spinning (MAS)-dynamic nuclear polarization (DNP) experiments on homogeneous solutions. In particular, we present a detailed analysis of three time constants: (1) the longitudinal build-up time constant TB for (1)H; (2) the rotating frame relaxation time constant T1ρ for (1)H and (13)C and (3) T2 of (13)C, the transverse relaxation time constant in the laboratory frame. These relaxation times were measured during microwave irradiation at a magnetic field of 5 T (140 GHz) as a function of the concentration of four polarizing agents: TOTAPOL, 4-amino-TEMPO, trityl (OX063), and Gd-DOTA and are compared to those obtained for a sample lacking paramagnetic doping. We also report the EPR relaxation time constants T1S and T2S, the DNP enhancements, ε, and the parameter E, defined below, which measures the sensitivity enhancement for the four polarizing agents as a function of the electron concentration. We observe substantial intensity losses (paramagnetic quenching) with all of the polarizing agents due to broadening mechanisms and cross relaxation during MAS. In particular, the monoradical trityl and biradical TOTAPOL induce ∼40% and 50% loss of signal intensity. In contrast there is little suppression of signal intensity in static samples containing these paramagnetic species. Despite the losses due to quenching, we find that all of the polarizing agents provide substantial gains in signal intensity with DNP, and in particular that the net enhancement is optimal for biradicals that operate with the cross effect. We discuss the possibility that much of this polarization loss can be regained with the development of instrumentation and methods to perform electron decoupling.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Algoritmos , Anisotropia , Isótopos de Carbono , Óxidos N-Cíclicos/química , Deutério , Campos Eletromagnéticos , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Radicais Livres , Compostos Heterocíclicos/química , Compostos Heterocíclicos com 3 Anéis/química , Espectroscopia de Ressonância Magnética/instrumentação , Micro-Ondas , Compostos Organometálicos/química , Propanóis/química , Soluções
18.
Zhonghua Xin Xue Guan Bing Za Zhi ; 41(2): 111-5, 2013 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-23710740

RESUMO

OBJECTIVE: To evaluate the feasibility, efficacy and safety of the percutaneous coronary intervention (PCI)guided by computed tomography (CT) coronary angiography derived roadmap and magnetic navigation system (MNS). METHODS: During June 2011 and May 2012, thirty consecutive patients receiving elective PCI were enrolled, coronary artery disease was primarily diagnosed by dual-source CT coronary angiography (DSCT-CA) at outpatient clinic and successively proved by coronary artery angiography in the hospital. Target vessels from pre-procedure DSCT-CA were transferred to the magnetic navigation system, and consequently edited, reconstructed, and projected onto the live fluoroscopic screen as roadmap. Parameters including characters of the target lesions, time, contrast volume, radiation dosage for guidewire crossing, and complications of the procedure were recorded. RESULTS: Thirty patients with 36 lesions were recruited and intervened by PCI. Among the target lesions, sixteen were classified as type A, 11 as type B1, 8 as type B2, 1 as type C. The average length of the target lesions was (22.0 ± 9.8) mm, and the average stenosis of the target lesions was (81.3 ± 10.3)%. Under the guidance of CT roadmap and MNS, 36 target lesions were crossed by the magnetic guidewires, with a lesion crossing ratio of 100%. The time of placement of the magnetic guidewires was 92.5 (56.6 - 131.3) seconds. The contrast volume and the radiation dosage for guidewire placement were 0.0 (0.0 - 3.0) ml and 235.0 (123.5 - 395.1) µGym(2)/36.5 (21.3 - 67.8) mGy, respectively. Guidewires were successfully placed in 21 (58.3%) lesions without contrast agent. All enrolled vessels were successfully treated, and there were no MNS associated complications. CONCLUSIONS: It is feasible, effective and safe to initiate PCI under the guidance of CT derived roadmap and MNS. This method might be helpful for the guidewire placement in the treatment of total occlusions.


Assuntos
Angiografia Coronária/métodos , Intervenção Coronária Percutânea , Tomografia Computadorizada por Raios X , Idoso , Feminino , Humanos , Magnetismo , Masculino , Pessoa de Meia-Idade
19.
Acc Chem Res ; 46(9): 1933-41, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23597038

RESUMO

During the three decades 1980-2010, magic angle spinning (MAS) NMR developed into the method of choice to examine many chemical, physical, and biological problems. In particular, a variety of dipolar recoupling methods to measure distances and torsion angles can now constrain molecular structures to high resolution. However, applications are often limited by the low sensitivity of the experiments, due in large part to the necessity of observing spectra of low-γ nuclei such as the I = 1/2 species (13)C or (15)N. The difficulty is still greater when quadrupolar nuclei, such as (17)O or (27)Al, are involved. This problem has stimulated efforts to increase the sensitivity of MAS experiments. A particularly powerful approach is dynamic nuclear polarization (DNP) which takes advantage of the higher equilibrium polarization of electrons (which conventionally manifests in the great sensitivity advantage of EPR over NMR). In DNP, the sample is doped with a stable paramagnetic polarizing agent and irradiated with microwaves to transfer the high polarization in the electron spin reservoir to the nuclei of interest. The idea was first explored by Overhauser and Slichter in 1953. However, these experiments were carried out on static samples, at magnetic fields that are low by current standards. To be implemented in contemporary MAS NMR experiments, DNP requires microwave sources operating in the subterahertz regime, roughly 150-660 GHz, and cryogenic MAS probes. In addition, improvements were required in the polarizing agents, because the high concentrations of conventional radicals that are required to produce significant enhancements compromise spectral resolution. In the last two decades, scientific and technical advances have addressed these problems and brought DNP to the point where it is achieving wide applicability. These advances include the development of high frequency gyrotron microwave sources operating in the subterahertz frequency range. In addition, low temperature MAS probes were developed that permit in situ microwave irradiation of the samples. And, finally, biradical polarizing agents were developed that increased the efficiency of DNP experiments by factors of ∼4 at considerably lower paramagnet concentrations. Collectively, these developments have made it possible to apply DNP on a routine basis to a number of different scientific endeavors, most prominently in the biological and material sciences. This Account reviews these developments, including the primary mechanisms used to transfer polarization in high frequency DNP, and the current choice of microwave sources and biradical polarizing agents. In addition, we illustrate the utility of the technique with a description of applications to membrane and amyloid proteins that emphasizes the unique structural information that is available in these two cases.


Assuntos
Espectroscopia de Ressonância Magnética , Compostos Alílicos/química , Óxidos N-Cíclicos/química , Propanóis/química , Compostos de Tritil/química
20.
J Infrared Millim Terahertz Waves ; 34(1): 42-52, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23539422

RESUMO

In this paper, we describe the design and experimental results from the rebuild of a 250 GHz gyrotron used for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance spectroscopy on a 380 MHz spectrometer. Tuning bandwidth of approximately 2 GHz is easily achieved at a fixed magnetic field of 9.24 T and a beam current of 95 mA producing an average output power of >10 W over the entire tuning band. This tube incorporates a double disk output sapphire window in order to maximize the transmission at 250.58 GHz. DNP Signal enhancement of >125 is achieved on a 13C-Urea sample using this gyrotron.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...