Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 10: 560487, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262941

RESUMO

Evidence for research over the past decade shows that epigenetic regulation mechanisms run through the development and prognosis of tumors. Therefore, small molecular compounds targeting epigenetic regulation have become a research hotspot in the development of cancer therapeutic drugs. According to the obvious abnormality of histone acetylation when tumors occur, it suggests that histone acetylation modification plays an important role in the process of tumorigenesis. Currently, as a new potential anti-cancer therapeutic drugs, many active small molecules that target histone acetylation regulatory enzymes or proteins such as histone deacetylases (HDACs), histone acetyltransferase (HATs) and bromodomains (BRDs) have been developed to restore abnormal histone acetylation levels to normal. In this review, we will focus on summarizing the changes of histone acetylation levels during tumorigenesis, as well as the possible pharmacological mechanisms of small molecules that target histone acetylation in cancer treatment.

2.
Front Oncol ; 10: 585288, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194731

RESUMO

One common and reversible type of post-translational modification (PTM) is the addition of O-linked ß-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation), and its dynamic balance is controlled by O-GlcNAc transferase (OGT) and glycoside hydrolase O-GlcNAcase (OGA) through the addition or removal of O-GlcNAc groups. A large amount of research data confirms that proteins regulated by O-GlcNAcylation play a pivotal role in cells. In particularly, imbalanced levels of OGT and O-GlcNAcylation have been found in various types of cancers. Recently, increasing evidence shows that imbalanced O-GlcNAcylation directly or indirectly impacts the process of cancer metastasis. This review summarizes the current understanding of the influence of O-GlcNAc-proteins on the regulation of cancer metastasis. It will provide a theoretical basis to further elucidate of the molecular mechanisms underlying cancer emergence and progression.

3.
J Ethnopharmacol ; : 113586, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33212178

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Acanthopanax senticosus (AS), previously classified as Eleutherococcus senticosus, is one of the most commonly used herbs in the Chinese materia medica. However, there is currently no comprehensive review summarising advances in AS research. AS has been used as a functional food and in various preparations since ancient times, to invigorate the liver and kidneys, replenish vitality, strengthen the bones, stimulate appetite, and improve memory. It is widely used in countries such as China, Korea, Japan, and Russia, for specific pharmacologic effects, although it contains various chemical components that ensure its broad-spectrum effect. Its chemical constituents mainly include glycosides and flavonoids. Over the past several decades, researchers worldwide have conducted systematic investigations on this herb. AS has positive pharmacological effects on the cardiovascular, central nervous, and immune systems. Representative pathways stimulated by AS are related to neuroactive ligand-receptor interactions, cancer, and phosphatidylinositol 3 kinase/protein kinase B signalling. Importantly, AS is safe and exerts no significant adverse effects at normal doses. AIM OF THE STUDY: To provide comprehensive insights into the ethnobotany, medicinal uses, chemical composition, pharmacological activity, and toxicology of AS to aid its future development and utilisation. MATERIALS AND METHODS: Information about AS was collected from various sources, including classic books about Chinese herbal medicine and scientific databases including scientific journals, books, and pharmacopoeia. We discuss the ethnopharmacology of AS from 1965 to 2020 and summarise the knowledge of AS phytochemicals, pharmacological activity, quality control, and toxicology. CONCLUSIONS: From the current literature, we conclude that AS is a promising dietary Chinese herb with various potential applications owing to its multiple therapeutic effects.

4.
Bioorg Med Chem Lett ; 30(21): 127504, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827631

RESUMO

25-OH ginsenosides are potent and rare prodrugs in natural sources. However current strategies for such modification always end up in undesirable side products and unsatisfied yield that hinders them from further applications. Herein, ginsenoside Rg1 was thoroughly converted into 20(S/R)-Rh1 and 25-OH-20(S/R)-Rh1 by Cordyceps Sinensis in an optimum medium. The chemical correctness of either 25-OH-20(S/R)-Rh1 epimers was validated by LC-IT-TOF-MSn and 13C NMR spectrometry. The biocatalytic pathway was established as Rg1 â†’ 20(S/R)-Rh1 â†’ 25-OH-20(S/R)-Rh1. The molar bioconversion rate for total 25-OH-20(S/R)-Rh1 was calculated to be 82.5%, of which S-configuration accounted for 43.2% while R-configuration 39.3%. These two 25-OH derivatives are direct hydration products from 20(S/R)-Rh1 without other side metabolites, suggesting this is a highly regioselective process. In conclusion, this biocatalytic system could be harnessed to facilitate the preparation of diversified 25-OH ginsenosides with high yields of the target compound and simple chemical background in the reaction mixture.

5.
Cell Mol Biol (Noisy-le-grand) ; 66(2): 111-117, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415936

RESUMO

To detect the expression of metastasis-associated colon cancer gene 1 (MACC1) protein in gastric cancer tissues, and analyze its relationship with clinicopathological parameters of gastric cancer and its effect on proliferation and invasion of gastric cancer cells. METHODS: 71 patients with gastric cancer in Fifth Hospital in Wuhan from June 2014 to March 2018 were selected as research subjects. Western blot was used to detect the expression of MACC1 in gastric cancer tissue and normal gastric mucosa tissue, and gastric cancer cell SGC7901 was transfected. Transfection group (transfected with MACC1-siRNA), negative control group (transfected with siRNA-NC) and blank control group (untreated cells) were set up. After transfection, the expressions of MACC1 protein and mRNA in the 3 groups were detected by Western blot and qRT-PCR methods, the cell proliferation was detected by MTT method, and the invasion ability of cells in vitro was detected by Transwell chamber. RESULTS: The expression of MACC1 protein in gastric cancer tissue was higher than the control group (P< 0.05). The expression of MACC1 protein in gastric cancer was related to the differentiation degree, infiltration depth, lymph node metastasis and different stages of gastric cancer (P< 0.05). After transfection, the expressions of MACC1 protein and mRNA in the transfection group was significantly lower than the negative control group and blank group (P< 0.05). There was no significant difference in cell viability between the blank group and negative control group at each time point (P> 0.05). CONCLUSION: MACC1 was highly expressed in gastric cancer tissues. The expression of MACC1 was related to the differentiation degree, infiltration depth, lymph node metastasis and staging of gastric cancer. Down-regulation of MACC1 could inhibit the proliferation and invasion of gastric cancer cells. This study provided a certain biological basis for early clinical prediction, diagnosis and treatment of gastric cancer.

6.
Int J Biol Macromol ; 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32437814

RESUMO

Panax ginseng glycoproteins (PGG) has been shown biological activity, but researches in this field are rarely reported. In this paper, PGG were prepared by reflux and then purified with macroporous resin column. Further separation and purification of PGG using high performance liquid chromatography (HPLC) and two major components (PGG-1, PGG-2) were obtained. The molecular weights were calculated by gel permeation chromatography (GPC), and the results are 1.5 KDa and 8.2 KDa respectively. The MTT assay was used to study the cytoprotective effects of PGG, the results exhibited that PGG had significant effect (P < 0.01), and showed an obvious dose-effect relationship. Anti-apoptosis experiment results showed that PGG and PGG-2 can inhibit Aß-induced apoptosis in SH-SY5Y cells (P < 0.05), and PGG-2 displayed better activity. The structures of N- and O-glycan were determined by combination of LC-MS/MS and methylation analysis. The computed parameters of PGG determined by MS including the theoretical isoelectric point (pI), instability index, aliphatic index and grand average of hydropathicity (GRAVY) were summarized systematically. The distinct differences between two parts would affect the behavior of PGG in vivo. The results of activity test and bioinformatics analysis would guide the study of PGG in pharmacokinetics and mechanism.

7.
Cancer Sci ; 111(7): 2259-2274, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32391585

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of liver cancer. It has a poor prognosis because it is often diagnosed at the advanced stage when treatments are limited. In addition, HCC pathogenesis is not fully understood, and this has affected early diagnosis and treatment of this disease. Human alkaline ceramidase 2 (ACER2), a key enzyme that regulates hydrolysis of cellular ceramides, affects cancer cell survival, however its role in HCC has not been well characterized. Our results showed that ACER2 is overexpressed in HCC tissues and cell lines. In addition, high ACER2 protein expression was associated with tumor growth; ACER2 knockdown resulted in decreased cell growth and migration. Sphingomyelin phosphodiesterase acid-like 3B (SMPDL3B) promoted HCC cell growth, invasion, and migration; SMPDL3B knockdown had a significant inhibitory effect on HCC tumor growth in vivo. Moreover, ACER2 positively regulated the protein level of SMPDL3B. Of note, ACER2/SMPDL3B promoted ceramide hydrolysis and S1P production. This axis induced HCC survival and could be blocked by inhibition of S1P formation. In conclusion, ACER2 promoted HCC cell survival and migration, possibly via SMPDL3B. Thus, inhibition of ACER2/SMPDL3B may be a novel therapeutic target for HCC treatment.


Assuntos
Ceramidase Alcalina/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Adulto , Idoso , Ceramidase Alcalina/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Neoplasias Hepáticas/patologia , Masculino , Proteínas de Membrana/biossíntese , Camundongos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Monoéster Fosfórico Hidrolases/biossíntese , Transdução de Sinais , Esfingomielina Fosfodiesterase/genética
8.
J Sep Sci ; 43(12): 2436-2446, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32227667

RESUMO

Four types of middle-pressure chromatogram isolated gels are evaluated for adsorption or desorption characteristics of ginsenosides from Panax ginseng. Among them, SP207SS and SP2MGS were selected for dynamic investigations based on their static adsorption or desorption capacity of total ginsenoside. Their adsorption kinetics was better explained by pseudosecond-order model and isotherms were preferably fitted to Langmuir model. Dynamic breakthrough experiments indicated an optimum sample loading speed of 4 bed volume/h for either SP207SS or SP2MGS. Desorption speed was determined to be 2 bed volume/h according to desorption amount of total ginsenoside in their effluents. Eight ginsenosides were identified and quantified by high performance liquid chromatography-triple quadropole-mass spectrometry in total ginsenoside extract and different fractions during stepwise dynamic elution. For SP207SS, 27.62% of loaded ginsenosides was detected in 40% ethanol fraction, while 59.12% of them were found in 60% ethanol fraction. As on SP2MGS, the number went to 53.71 and 44.43%, respectively. Recovery rate of ginsenosides were calculated to 78.65% for SP207SS and 89.53% for SP2MGS, respectively. Intriguingly, content of Rg1 and Re in 40% ethanol fraction from SP207SS became 20.1 and 18.6 times higher than that in total ginsenoside extract by one-step elution, which could be leveraged for the facile enrichment of these two ginsenosides from natural sources.

9.
Int J Biol Macromol ; 150: 695-704, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32061699

RESUMO

Protein from Panax ginseng can improve learning, memory, and analgesia. Here, we investigated a fluorescence labeling method that can be used to determine the in vivo distribution of P. ginseng protein (PGP). High-performance liquid chromatography (HPLC) was used to define the amino acid composition and molecular weight of PGP; LC-MS/MS was used to identify the PGP structure, which was fluorescently-labeled using a fluorescein isothiocyanate (FITC) probe. The connection form of the PGP fluorescent marker (PGP-FITC) was identified by ultraviolet and infrared spectrophotometry. The in vivo distribution of PGP was observed by fluorescence imaging, and tissue content was determined. Results showed that PGP was enriched in the brain and that vascular epithelial cells showed specific uptake. We provide an experimental method to label and identify the in vivo distribution of PGP, which forms the basis for future studies to determine whether PGP can penetrate the blood-brain barrier (BBB) and elucidate the transport mechanism.

10.
Molecules ; 25(2)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947655

RESUMO

Proliposomes were used to improve the solubility and oral bioavailability of nifedipine. Nifedipine proliposomes were prepared by methanol injection-spray drying method. The response surface method was used to optimize formulation to enhance the encapsulation efficiency (EE%) of nifedipine. The particle size of nifedipine proliposomes after rehydration was 114 nm. Surface morphology of nifedipine proliposomes was observed by a scanning electron microscope (SEM) and interaction of formulation ingredients was assessed by differential scanning calorimetry (DSC). The solubility of nifedipine is improved 24.8 times after forming proliposomes. In vitro release experiment, nifedipine proliposomes had a control release effect, especially in simulated gastric fluid. In vivo, nifedipine proliposomes significantly improved the bioavailability of nifedipine. The area under the concentration-time curve (AUC0-∞) of nifedipine proliposomes was about 10 times than nifedipine after oral administration. The elimination half-life (T1/2ß) of nifedipine was increased from 1.6 h to 6.6 h. In conclusion, proliposomes was a promising system to deliver nifedipine through oral route and warranted further investigation.


Assuntos
Composição de Medicamentos , Liberação Controlada de Fármacos , Trato Gastrointestinal/metabolismo , Lipossomos/química , Nifedipino/química , Nifedipino/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Química Farmacêutica , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nifedipino/administração & dosagem , Ratos , Ratos Wistar , Solubilidade , Vasodilatadores/administração & dosagem , Vasodilatadores/química , Vasodilatadores/farmacocinética
11.
Integr Cancer Ther ; 18: 1534735419886655, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31729239

RESUMO

Ginsenosides, the key components isolated from ginseng, have been extensively studied in antitumor treatment. Numerous studies have shown that ginsenosides have direct function in tumor cells through the induction of cancer cell apoptosis and the inhibition of cancer cell growth and enhance the antitumor immunity through the activation of cytotoxic T lymphocytes and natural killer cells. However, little is known about the function of ginsenosides on myeloid immunosuppressive cells including dendritic cells in tumor, tumor-associated macrophages, and myeloid-derived suppressor cells in the tumor microenvironments. Those myeloid immunosuppressive cells play important roles in promoting tumor angiogenesis, invasion, and metastasis. In the review, we summarize the regulatory functions of ginsenosides on myeloid immunosuppressive cells in tumor microenvironment, providing the novel therapeutic methods for clinical cancer treatment.


Assuntos
Ginsenosídeos/farmacologia , Imunossupressores/farmacologia , Células Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Linfócitos T Citotóxicos/efeitos dos fármacos
12.
J Cancer ; 10(18): 4350-4356, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31413755

RESUMO

Myeloid-derived suppressor cells (MDSCs), one heterogeneous population of immature myeloid cells, have suppressive function on immune response during tumor, inflammation, infection and autoimmune diseases. The molecular mechanism underlying expansion and function of MDSCs is becoming appreciated to manipulate immune response in the diseases. MicroRNA (miRNAs) as one short noncoding RNAs, are involved in regulating cell proliferation, differentiation and maturation. However, it needs to be further studied how miRNAs mediate the development and function of MDSC in association with cancer and other diseases. In the review, we report and discuss recent studies that miRNAs networks regulate the differentiation, expansion and suppression function of MDSCs in tumor microenvironment or other diseases through different signaling pathways. Those studies may provide one novel potential approach for tumor immunotherapy.

13.
Pharmaceutics ; 11(7)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277236

RESUMO

Vitamin D3 is an effective skin protective substance to prevent photoaging. Liposomes were used as a carrier to deliver vitamin D3 to improve the stability and to enhance the treatment effect of vitamin D3. The stability of vitamin D3 liposomes, average cumulative penetration, and retention of vitamin D3 in the skin were then evaluated and compared with free vitamin D3. Finally, the treatment effect of vitamin D3 liposomes in a rat photoaging model was appraised and Haematoxylin-Eosin (H&E) staining was used to assess the histology changes of the skin after vitamin D3 liposome treatment. The results indicated that liposomes could significantly improve the stability of vitamin D3. The average skin retention of vitamin D3 liposomes was 1.65 times that of the vitamin D3 solution. Vitamin D3 liposomes could repair the surface morphology of skin in the photoaging model and promote the production of new collagen fibers. Vitamin D3 liposomes as a potential skin care agent could significantly improve skin appearance and repair damage in the histology of photoaging.

14.
Biomed Res Int ; 2019: 2561828, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941359

RESUMO

The changes of brain metabolism in mice after injection of ginseng glycoproteins (GPr) were analyzed by gas chromatography mass spectrometry- (GC/MS-) based metabolomics platform. The relationship between sedative and hypnotic effects of ginseng glycoproteins and brain metabolism was discussed. Referring to pentobarbital sodium subthreshold test, we randomly divided 20 mice into two groups: control and ginseng glycoproteins group. The mice from the control group were treated with normal saline by i.p and GPr group were treated with 60 mg/kg of GPr by i.p. The results indicated that GPr could significantly improve the sleep quality of mice. Through multivariate statistical analysis, we found that there were 23 differential metabolites in whole brain tissues between the control group and the GPr group. The pathway analysis exhibited that GPr may be involved in the regulation of the pathway including purine metabolism, nicotinate and nicotinamide metabolism, glycine, serine and threonine metabolism, arginine and proline metabolism, alanine, aspartate and glutamate metabolism, and steroid hormone biosynthesis. This work is helpful to understand the biochemical mechanism of GPr on promoting sleep and lay a foundation for further development of drugs for insomnia.


Assuntos
Glicoproteínas/farmacologia , Metabolômica/métodos , Panax/química , Sono/efeitos dos fármacos , Animais , Análise Discriminante , Cromatografia Gasosa-Espectrometria de Massas , Análise dos Mínimos Quadrados , Masculino , Metaboloma , Camundongos , Pentobarbital/farmacologia , Análise de Componente Principal , Extratos de Tecidos/química
15.
Front Pharmacol ; 10: 9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837865

RESUMO

Coptis, a traditional medicinal plant, has been used widely in the field of traditional Chinese medicine for many years. More recently, the chemical composition and bioactivity of Coptis have been studied worldwide. Berberine is a main component of Rhizoma Coptidis. Modern medicine has confirmed that berberine has pharmacological activities, such as anti-inflammatory, analgesic, antimicrobial, hypolipidemic, and blood pressure-lowering effects. Importantly, the active ingredient of berberine has clear inhibitory effects on various cancers, including colorectal cancer, lung cancer, ovarian cancer, prostate cancer, liver cancer, and cervical cancer. Cancer, ranked as one of the world's five major incurable diseases by WHO, is a serious threat to the quality of human life. Here, we try to outline how berberine exerts antitumor effects through the regulation of different molecular pathways. In addition, the berberine-mediated regulation of epigenetic mechanisms that may be associated with the prevention of malignant tumors is described. Thus, this review provides a theoretical basis for the biological functions of berberine and its further use in the clinical treatment of cancer.

16.
Saudi J Biol Sci ; 25(5): 917-922, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30108441

RESUMO

Ginsengs, has long been used as one medicinal herb in China for more than two thousand years. Many studies have shown that ginsengs have preventive and therapeutic roles for cancer, and play a good complementary role in cancer treatment. Ginsenosides, as most important constituents of ginseng, have been extensively investigated and emphasized in cancer chemoprevention and therapeutics. However, the functional mechanism of Ginsenosides on cancer is not well known. This review will focus on introducing the functional mechanisms of ginsenosides and their metabolites, which regulate signaling pathways related with tumor growth and metastasis. Ginsenosides inhibit tumor growth via upregulating tumor apoptosis, inducing tumor cell differentiation and targeting cancer stem cells. In addition, Ginsenosides regulate tumor microenvironment via suppressing tumor angiogenesis-related proteins and pathways. Structural modification of ginsenosides and their administration alone or combinations with other Chinese medicines or chemical medicines have recently been developed to be a new therapeutic strategy for cancer.

17.
Saudi J Biol Sci ; 25(5): 991-995, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30108453

RESUMO

Public interest in complementary and alternative medicine has been increased worldwide, due to its wide applications in cancer prevention and treatment. Cordycepin is one of the most common and crucial types of complementary and alternative medicine. Cordycepin (3'-deoxyadenosine), a derivative of adenosine, was first isolated from medicine drug Cordyceps militaris. Cordycepin has been widely used as one compound for antitumor, which has been found to exert antiangiogenic, anti-metastatic, and antiproliferative effects, as well as inducing apoptosis. However, the mechanism of its anti-tumor activity is not well known. This review will clarify anti-tumor mechanisms of Cordycepin, which regulate signaling pathways related with tumor growth and metastasis. Cordycepin inhibit tumor growth via upregulating tumor apoptosis, inducing cell cycle arrest and targeting cancer stem cells (CSCs). Cordycepin regulates tumor microenvironment via suppressing tumor metastasis-related pathways. Thus, Cordycepins may be one of important supplement or substitute medicine drug for cancer treatment.

18.
Molecules ; 23(6)2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29857514

RESUMO

Panax ginseng is well known for its medicinal functions. As a class of important compound of ginseng, ginsenoside is widely studied around the world. In addition, ginseng glycopeptides also showed good biological activity, but researches in this field are rarely reported. In this study, ginseng glycopeptides (Gg) were first prepared from Panax ginseng by reflux extracted with 85% ethanol and the following purification with Sephadex G-15 column. Then, the inflammatory pain models induced by carrageenan and the rat pain models induced by Faure Marin were established for research on mechanism of analgesic activities. It is showed that Gg had an obvious inhibiting effect on inflammation and a significant reduction on the Malondialdehyde (MDA) of inflammatory foot tissue. And there were significant differences between moderate to high dose of Gg and model group in Interleukin 1ß (IL-1ß), Interleukin 2 (IL-2), Interleukin 4 (IL-4), Tumor necrosis factor α (TNF-α) and Histamine. The two models can be preliminarily determined that the analgesic effect of Gg may be peripheral, which mechanism may be related to the dynamic balance between proinflammatory cytokines (TNF-α, IL-1ß) and anti-inflammatory cytokines (IL-2, IL-4, and Interleukin 10 (IL-10)). A series of methods were used to study Gg in physical-chemical properties and linking mode of glycoside. The high-resolution mass spectrometry was used for identification of the structure of Gg. Moreover, the structure of 20 major Gg were investigated and identified. The structural analysis of Gg was benefit for the next study on structure-activity relationship.


Assuntos
Analgésicos/química , Analgésicos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Glicopeptídeos/química , Glicopeptídeos/farmacologia , Panax/química , Animais , Carragenina/química , Carragenina/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Masculino , Metilação , Estrutura Molecular , Dor/etiologia , Manejo da Dor , Ratos , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
19.
Int J Biol Macromol ; 113: 607-615, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29408615

RESUMO

The root of Panax ginseng C. A. Mey (Araliaceae) has medicinal value in complex system of Traditional Chinese medicines for its use in improving cognitive function. A glycoproteins named PGL-1 was extracted from ginseng which subjected to through a macroporous resin, hollow-fiber ultrafiltration and dialyzed. The glycoproteins has a molecular weight in the range from 0.4 to 4.4kDa, with an average molecular mass of 1.6kDa. HPLC analysis revealed that the compositions of glycoproteins included fucose, mannose, rhamnose, glucose, galacturonic acid, N-acetylglucosamine and N-acetylgalactosamine. Glycan of PGL-1 has a backbone of →4)-Rha-(1→, →4)-Fuc -(1→, →6)-Gal-(1→, →4)-GalA-(1→, →4)-GlcNAc-(1→ and →4)-GalNAc-(1→,and (→3,6)-Man-(1→) was distributed in branches. The (1→)-Fuc, (1→)-Glc and (1→)-GlcNAc or (1→)-GalNAc were regarded as a terminal residue. The Morris water maze test revealed that the PGL-1 can effectively alleviate the memory impairment symptoms of rats induced by Aß25-35. All dose groups showed significant activity of protective effect on apoptosis SH-SY5Y induced by Aß25-35, and obviously inhibited the S phase arrest. Compared with Aß25-35 treatment alone, a significant reduction in NO concentration and NOS activity was detected in cells co-administered with glycoproteins. Thus, glycoproteins derived from ginseng might be a promising anti-AD reagent.


Assuntos
Glicoproteínas/farmacologia , Fármacos Neuroprotetores/farmacologia , Panax/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/toxicidade , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Feminino , Humanos , Masculino , Memória/efeitos dos fármacos , Memória/efeitos da radiação , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/toxicidade , Agregados Proteicos , Ratos , Ratos Wistar
20.
PLoS One ; 12(9): e0183047, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28880869

RESUMO

BACKGROUND: Daodi-herb is a part of Chinese culture, which has been naturally selected by traditional Chinese medicine clinical practice for many years. Sweet wormwood herb is a kind of Daodi-herb, and comes from Artemisia annua L. Artemisinin is a kind of effective antimalarial drug being extracted from A. annua. Because of artemisinin, Sweet wormwood herb earns a reputation. Based on the Pharmacopoeia of the People's Republic of China (PPRC), Sweet wormwood herb can be used to resolve summerheat-heat, and prevent malaria. Besides, it also has other medical efficacies. A. annua, a medicinal plant that is widely distributed in the world contains many kinds of chemical composition. Research has shown that compatibility of artemisinin, scopoletin, arteannuin B and arteannuic acid has antimalarial effect. Compatibility of scopoletin, arteannuin B and arteannuic acid is conducive to resolving summerheat-heat. Chemical constituents in A. annua vary significantly according to geographical locations. So, distribution of A. annua may play a key role in the characteristics of efficacy and chemical constituents of Sweet wormwood herb. It is of great significance to study this relationship. OBJECTIVES: We mainly analyzed the relationship between the chemical constituents (arteannuin B, artemisinin, artemisinic acid, and scopoletin) with special efficacy in A. annua that come from different provinces in china, and analyzed the relationship between chemical constituents and spatial distribution, in order to find out the relationship between efficacy, chemical constituents and distribution. METHODS: A field survey was carried out to collect A. annua plant samples. A global positioning system (GPS) was used for obtaining geographical coordinates of sampling sites. Chemical constituents in A. annua were determined by liquid chromatography tandem an atmospheric pressure ionization-electrospray mass spectrometry. Relationship between chemical constituents including proportions, correlation analysis (CoA), principal component analysis (PCA) and cluster analysis (ClA) was displayed through Excel and R software version2.3.2(R), while the one between efficacy, chemical constituents and spatial distribution was presented through ArcGIS10.0, Excel and R software. RESULTS: According to the results of CoA, arteannuin B content presented a strong positive correlation with artemisinic acid content (p = 0), and a strong negative correlation with artemisinin content (p = 0). Scopoletin content presented a strong positive correlation with artemisinin content (p = 0), and a strong negative correlation with artemisinic acid content (p = 0). According to the results of PCA, the first two principal components accounted for 81.57% of the total accumulation contribution rate. The contribution of the first principal component is about 45.12%, manly including arteannuin B and artemisinic acid. The contribution of the second principal component is 36.45% of the total, manly including artemisinin and scopoletin. According to the ClA by using the principal component scores, 19 provinces could be divided into two groups. In terms of provinces in group one, the proportions of artemisinin are all higher than 80%. Based on the results of PCA, ClA, percentages and scatter plot analysis, chemical types are defined as "QHYS type", "INT type" and "QHS type." CONCLUSION: As a conclusion, this paper shows the relationship between efficacy, chemical constituents and distribution. Sweet wormwood herb with high arteannuin B and artemisinic acid content, mainly distributes in northern China. Sweet wormwood herb with high artemisinin and scopoletin content has the medical function of preventing malaria, which mainly distributes in southern China. In this paper, it is proved that Sweet wormwood Daodi herb growing in particular geographic regions, has more significant therapeutical effect and higher chemical constituents compared with other same kind of CMM. And also, it has proved the old saying in China that Sweet wormwood Daodi herb which has been used to resolve summerheat-heat and prevent malaria, which distributed in central China. But in modern time, Daodi Sweet wormwood herb mainly has been used to extract artemisinin and prevent malaria, so the Daod-region has transferred to the southern China.


Assuntos
Antimaláricos/química , Artemisia annua/química , Extratos Vegetais/química , Artemisininas/química , China , Análise por Conglomerados , Análise de Componente Principal , Escopoletina/química , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...