Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 14(1): 206, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31209591

RESUMO

Effect of interface roughness of quantum wells, non-intentional doping, and alloy disorder on performance of GaN-based terahertz quantum cascade lasers (QCL) has been investigated by the formalism of nonequilibrium Green's functions. It was found that influence of alloy disorder on optical gain is negligible and non-intentional doping should stay below a reasonable concentration of 1017 cm-3 in order to prevent electron-impurities scattering degradation and free carrier absorption. More importantly, interface roughness scattering is found the dominating factor in optical gain degradation. Therefore, its precise control during the fabrication is critical. Finally, a gain of 60 cm-1 can be obtained at 300 K, showing the possibility of fabricating room temperature GaN Terahertz QCL.

2.
Nanotechnology ; 30(21): 214006, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-30736025

RESUMO

In this work, nanoscale electrical and optical properties of n-GaN nanowires (NWs) containing GaN/AlN multiple quantum discs (MQDs) grown by molecular beam epitaxy are investigated by means of single wire I(V) measurements, electron beam induced current microscopy (EBIC) and cathodoluminescence (CL) analysis. A strong impact of non-intentional AlN and GaN shells on the electrical resistance of individual NWs is put in evidence. The EBIC mappings reveal the presence of two regions with internal electric fields oriented in opposite directions: one in the MQDs region and the other in the adjacent bottom GaN segment. These fields are found to co-exist under zero bias, while under an external bias either one or the other dominates the current collection. In this way EBIC maps allow us to locate the current generation within the wire under different bias conditions and to give the first direct evidence of carrier collection from AlN/GaN MQDs. The NWs have been further investigated by photoluminescence and CL analyses at low temperature. CL mappings show that the near band edge emission of GaN from the bottom part of the NW is blue-shifted due to the presence of the radial shell. In addition, it is observed that CL intensity drops in the central part of the NWs. Comparing the CL and EBIC maps, this decrease of the luminescence intensity is attributed to an efficient charge splitting effect due to the electric fields in the MQDs region and in the GaN base.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA