Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(1): e0228554, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32004358

RESUMO

Concerns on the timing and processes associated with petroleum degradation were raised after the use of Corexit during the Deepwater Horizon oil spill. There is a lack of understanding of the removal of oil associated with flocculate materials to the sediment. Mesocosm studies employing coastal and open-ocean seawater from the Gulf of Mexico were undertaken to examine changes in oil concentration and composition with time. The water accommodated fractions (WAF) and chemically enhanced WAF (CEWAF) produced using Macondo surrogate oil and Corexit were followed over 3-4 days in controlled environmental conditions. Environmental half-lives of estimated oil equivalents (EOE), polycyclic aromatic hydrocarbons (PAH), n-alkanes (C10-C35), isoprenoids pristane and phytane, and total petroleum hydrocarbons (TPH) were determined. EOE and PAH concentrations decreased exponentially following first-order decay rate kinetics. WAF, CEWAF and DCEWAF (a 10X CEWAF dilution) treatments half-lives ranged from 0.9 to 3.2 days for EOE and 0.5 to 3.3 days for PAH, agreeing with estimates from previous mesocosm and field studies. The aliphatic half-lives for CEWAF and DECWAF treatments ranged from 0.8 to 2.0 days, but no half-life for WAF could be calculated as concentrations were below the detection limits. Biodegradation occurred in all treatments based on the temporal decrease of the nC17/pristane and nC18/phytane ratios. The heterogeneity observed in all treatments was likely due to the hydrophobicity of oil and weathering processes occurring at different rates and times. The presence of dispersant did not dramatically change the half-lives of oil. Comparing degradation of oil alone as well as with dispersant present is critical to determine the fate and transport of these materials in the ocean.

2.
Mar Pollut Bull ; 151: 110798, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32056593

RESUMO

Species-level variability has made it difficult to determine the relative sensitivity of phytoplankton to oil and mixtures of oil and dispersant. Here we develop a phytoplankton group sensitivity index using ribosome sequence data that we apply to a mesocosm experiment in which a natural microbial community was exposed to oil and two oil-dispersant mixtures. The relative sensitivity of four phytoplankton taxonomic groups, diatoms, dinoflagellates, green algae, and Chrysophytes, was computed using the log of the ratio of the number of species that increase to the number that decrease in relative abundance in the treatment relative to the control. The index indicates that dinoflagellates are the most sensitive group to oil and oil-dispersant treatments while the Chrysophytes benefit under oil exposure compared to the other groups examined. The phytoplankton group sensitivity index can be generally applied to quantify and rank the relative sensitivity of diverse microbial groups to environmental conditions and pollutants.

3.
Mar Pollut Bull ; 151: 110804, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32056599

RESUMO

Here, we report results from a 15-day mesocosm experiment examining changes in estimated oil equivalents (EOEs), n-alkanes (n-C10 to n-C35), polycyclic aromatic hydrocarbons (PAHs) and petroleum biomarkers. Water accommodated fractions (WAF) of oil and diluted chemically enhanced WAF (DCEWAF) were prepared and concentrations of oil residues determined on day 0, 3 and 15, respectively. Significant removals of n-alkane and PAHs were observed starting from day 3. The n-C17/pristane and n-C18/phytane ratios suggested that the n-alkane removal was due to biodegradation in the mesocosms. The ratios of C2-dibenzothiophenes/C2-phenanthrenes (D2/P2) and C3-dibenzothiophenes/C3-phenanthrenes (D3/P3) were found to be stable through the experiment. DCEWAF treatment had longer half-lives for most n-alkanes but shorter half-lives for most PAHs than the WAF treatment. Most petroleum biomarkers were stable throughout the experiment. However, depletion of TAS (tricyclic aromatic steroids) was observed on day 15 of DCEWAF treatment.

4.
Mar Pollut Bull ; 153: 110906, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32056862

RESUMO

The Deepwater Horizon oil spill released millions of barrels of crude oil into the Gulf of Mexico, and saw widespread use of the chemical dispersant Corexit. We assessed the role of traits, such as cell size, cell wall, motility, and mixotrophy on the growth and photosynthetic response of 15 phytoplankton taxa to oil and Corexit. We collected growth and photosynthetic data on five algal cultures. These responses could be separated into resistant (Tetraselmis astigmatica, Ochromonas sp., Heterocapsa pygmaea) and sensitive (Micromonas pusilla, Prorocentrum minimum). We combined this data with 10 species previously studied and found that cell size is most important in determining the biomass response to oil, whereas motility/mixotrophy is more important in the dispersed oil. Our analysis accounted for a third of the variance observed, so further work is needed to identify other factors that contribute to oil resistance.

5.
Sci Total Environ ; 706: 135681, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31780163

RESUMO

The pervasive presence of plastic waste in the aquatic environment is widely viewed as one of the most serious environmental challenges for current and future generations. Microplastics ultimately degrade into nano and smaller-sizes. In turn, their biological and ecological impacts become more complicated and ambiguous. Nano-plastic particles travel from freshwater systems to estuarine and oceanic regions, during which they can interact with dissolved organic matter (DOM) to form microgels. Microgel formation is ubiquitous in aquatic systems, serving as a shunt between DOM and particulate organic matter (POM), as well as playing key roles in particle aggregation/sedimentation and pollutant transport. Currently the influences and mechanisms of the aggregation behavior and environmental fate of nano-plastics in different aquatic environments is poorly understood. Here, we report that 25 nm polystyrene nano-particles in lake and river water can promote POM (microgel) formation and accelerate the DOM-POM transition. We also adjusted various salinities of water samples to simulate scenarios based on plastic transport in waters flowing from rivers to seas. The results indicate polystyrene nanoparticles can interact with organic matter to form large organic particles, which may undergo further settling in response to specific salinity levels. Polystyrene-induced microgel formation appears to involve the hydrophobic interactions between plastics and DOM. Our data provides much needed information for modeling and understanding the retention and sedimentation of nano-plastics. We show that nano-plastics alter the DOM-POM shunt to cause unanticipated perturbations in the functionality of aquatic ecosystems.

6.
Mar Pollut Bull ; 150: 110713, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31757392

RESUMO

The water-soluble compounds of oil (e.g. low molecular weight PAHs) dissolve as a function of their physicochemical properties and environmental conditions, while the non-soluble compounds exist as dispersed droplets. Both the chemical and physical form of oil will affect the biological response. We present data from a mesocosm study comparing the microbial response to the water-soluble fraction (WSF), versus a water-accommodated fraction of oil (WAF), which contains both dispersed and dissolved oil components. WAF and WSF contained similar concentrations of low molecular weight PAHs, but concentrations of 4- and 5-ring PAHs were higher in WAF compared to WSF. Microbial communities were significantly different between WSF and WAF treatments, primary productivity was reduced more in WSF than in WAF, and concentrations of transparent exopolymeric particles were highest in WSF and lowest in the controls. These differences highlight the importance of dosing strategy for mesocosm and toxicity tests.

7.
Sci Total Environ ; 693: 133626, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31377363

RESUMO

Large amounts of oil containing mucous-like marine snow formed in surface waters adjacent to the Deepwater Horizon spill that was implicated in oil delivery to the seafloor. However, whether chemical dispersants that were used increased or decreased the oil incorporation and sedimentation efficiency, and how exopolymeric substances (EPS) are involved in this process remains unresolved. To investigate the microbial responses to oil and dispersants in different oceanic settings, indicated by EPS production, petro- and non-petro carbon sedimentation, four mesocosm (M) experiments were conducted: 1) nearshore seawater with a natural microbial consortia (M2); 2) offshore seawater with f/20 nutrients (M3); 3) coastal seawater with f/20 nutrients (M4); 4) nearshore seawater with a natural microbial consortia for a longer duration (M5). Four treatments were conducted in M2, M3 and M4 whereas only three in M5: 1) a water accommodated fraction of oil (WAF), 2) a chemically-enhanced WAF prepared with Corexit (CEWAF, not in M5), 3) a 10-fold diluted CEWAF (DCEWAF); and 4) controls. Overall, oil and dispersants input, nutrient and microbial biomass addition enhanced EPS production. Dispersant addition tended to induce the production of EPS with higher protein/carbohydrate (P/C) ratios, irrespective of oceanic regions. EPS produced in M4 was generally more hydrophobic than that produced in M3. The P/C ratio of EPS in both the aggregate and the colloidal fraction was a key factor that regulated oil contribution to sinking aggregates, based on the close correlation with %petro-carbon in these fractions. In the short term (4-5 days), both the petro and non-petro carbon sedimentation efficiencies showed decreasing trends when oil/dispersants were present. In comparison, in the longer-term (16 days), petro-carbon sedimentation efficiency was less influenced by dispersants, possibly due to biological and physicochemical changes of the components of the oil-EPS-mineral phase system, which cooperatively controlled the sinking velocities of the aggregates.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Sedimentos Geológicos/microbiologia , Petróleo/análise , Poluentes Químicos da Água/análise , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos/química , Poluição por Petróleo/análise , Água do Mar/química , Tensoativos/química
8.
Harmful Algae ; 86: 55-63, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31358277

RESUMO

The diatom genus Pseudo-nitzschia is a common component of phytoplankton communities in the Gulf of Mexico and is potentially toxic as some species produce the potent neurotoxin domoic acid. The impact of oil and chemical dispersants on Pseudo-nitzschia spp. and domoic acid production have not yet been studied; preliminary findings from a mesocosm experiment suggest this genus may be particularly resilient. A toxicological study was conducted using a colony of Pseudo-nitzschia sp. isolated from a station off the coast of Louisiana in the Gulf of Mexico. The cultures were exposed to a water accommodated fraction (WAF) of oil and a diluted chemically enhanced WAF (DCEWAF) which was a mix of oil and dispersant (20:1). Exposure to WAF induced a lag phase but did not inhibit growth rates once in exponential growth. Cultures grown in DCEWAF did not experience a lag phase but had significantly lower growth rates than the Control and WAF cultures. The cellular quota of domoic acid was higher in cultures treated with DCEWAF and WAF relative to their control values, and half of the domoic acid had leaked out of the cells into the surrounding seawater in the DCEWAF cultures while all the domoic acid remained inside the cells in WAF-treated cultures. These results suggest that the presence of oil could lead to toxic blooms, but that the application of dispersant could decrease bioaccumulation of domoic acid through the food web.

9.
Plant Physiol ; 180(4): 1898-1911, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31152126

RESUMO

Diatoms secrete a significant amount of polysaccharides, which can serve as a critical organic carbon source for bacteria. The 2010 Deepwater Horizon oil spill exposed the Gulf of Mexico to substantial amounts of oil that also impacted the phytoplankton community. Increased production of exopolymeric substances was observed after this oil spill. Polysaccharides make up a major fraction of exopolymeric substances; however, their physiological role during an oil spill remains poorly understood. Here, we analyzed the role of polysaccharides in the growth and physiology of the oil-sensitive diatom Thalassiosira pseudonana and how they shape the surrounding bacterial community and its activity in the presence of oil. We found that inhibition of chrysolaminarin synthesis had a negative effect on the growth of T pseudonana and intracellular monosaccharide accumulation, which in turn suppressed photosynthesis by feedback inhibition. In addition, by acting as a carbon reserve, chrysolaminarin helped in the recovery of T pseudonana in the presence of oil. Inhibition of chrysolaminarin synthesis also influenced the bacterial community in the free-living fraction but not in the phycosphere. Exposure to oil alone led to increased abundance of oil-degrading bacterial genera and the activity of exoenzyme lipase. Our data show that chrysolaminarin synthesis plays an important role in the growth and survival of T pseudonana in the presence of oil, and its inhibition can influence the composition and activity of the surrounding bacterial community.

10.
Aquat Toxicol ; 212: 20-27, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31039523

RESUMO

Polybrominated diphenyl ethers (PBDEs), a series of highly persistent organic pollutants (POPs), are ubiquitous in marine ecosystems. As key primary producers, microalgae are of great importance on evaluating the environmental outcome of PBDEs pollution. In this study, the toxic mechanisms of BDE-47 on the marine diatom Thalassiosira pseudonana were evaluated by measuring multiple physiological processes. Three concentrations of BDE-47 (25, 15 and 5 µg L-1) were used along with two controls (blank: no BDE-47 or DMSO; negative control: only DMSO). Experiments lasted 144 h (6 days), in which the actual BDE-47 concentrations, cell densities, nutrient (nitrate and phosphate) uptake, pigment compositions, photosynthetic physiology, cell morphology and cellular contents (organic carbon and nitrogen) were measured at 12-48 h intervals. The toxic mechanisms of BDE-47 on T. pseudonana cells were evaluated by measuring multiple physiological processes including photosynthesis, nutrient uptake, cellular material synthesis and cell cycle progressions. The cell divisions of T. pseudonana were severely inhibited by the stress of BDE-47, but the photosynthetic parameters were much less declined and recovered earlier than the cell divisions in the same BDE-47 treatments. The unsuppressed uptake rates of nutrients, increased cell volume and cellular contents indicated the cellular material synthesis proceeded normally. Finally, we found that the cell cycle was arrested in G2/M phase under the stress of BDE-47, we thus concluded that the inhibition of cell divisions by BDE-47 was not due to the lack of energy or cellular materials, where the cell cycle arrest happened; this might be the most important toxicological outcome.


Assuntos
Diatomáceas/efeitos dos fármacos , Diatomáceas/fisiologia , Éteres Difenil Halogenados/toxicidade , Fenômenos Fisiológicos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Carbono/metabolismo , Ciclo Celular/efeitos dos fármacos , Diatomáceas/citologia , Diatomáceas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Pigmentos Biológicos/metabolismo , Estresse Fisiológico/efeitos dos fármacos
11.
Environ Sci Technol ; 53(7): 3441-3450, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30827089

RESUMO

Following the Deepwater Horizon oil spill in the Gulf of Mexico, natural marine snow interacted with oil and dispersants forming marine oil snow (MOS) that sank from the water column to sediments. Mesocosm simulations demonstrate that Macondo surrogate oil incorporates into MOS and can be isolated, extracted, and analyzed via Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Up to 47% of the FTICR-MS signal from MOS extracts can be attributed to formulas also found in Macondo surrogate oil demonstrating extensive oil incorporation. Additionally, oxygenation patterns for MOS extracts provide evidence for degraded oil compounds. Formulas having similar double bond equivalents but higher oxygen content (MOS CHO: CHO2-9, DBE2-16, MOS CHON: CHO0-7N1, DBE9-18; Macondo CHO: CHO1-4, DBE2-15, CHON: CHO0-3N1, DBE9-21) were found in MOS extracts generating isoabundance distributions similar to those of environmentally aged oil. Such shifts in molecular composition are consistent with the transformation of high DBE oil components, unobservable by FTICR-MS until oxygenation in the mesocosms. Low light conditions and the rapid proliferation of hydrocarbon-degraders observed in parallel studies suggest biological activity as the primary cause of oil degradation. MOS may thus represent an important microenvironment for oil degradation especially during its long transit below the euphotic zone to sediments.


Assuntos
Poluição por Petróleo , Poluentes Químicos da Água , Sedimentos Geológicos , Golfo do México , Hidrocarbonetos
12.
Heliyon ; 5(1): e01174, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30775571

RESUMO

Chemical characterization of the presence of oil in environmental samples are performed using methods of varying complexity. Extraction of samples with an organic solvent and analysis by fluorescence spectrometry has been shown to be a rapid and effective screening technique for petroleum in the environment. During experiments, rapid analysis of oil by fluorescence provides the opportunity for researchers to modify the experimental conditions in real time. Estimated Oil Equivalents (EOE) relies on the fluorescence measurement of the aromatic compounds to estimate the oil concentration. The present intercalibration study was designed to investigate whether different fluorometer instruments can reliably measure EOE and whether the results are intercomparable. Additionally, the need for extraction of oil compounds into an organic solvent was investigated. Three different fluorometers were used in three different laboratories: a Horiba Aqualog, a Turner Trilogy and a Shimadzu Spectrofluorophotometer RF-1501. Results from these different instruments showed excellent agreement for EOE determinations. A very high correlation was found between the EOE results obtained with Aqualog Horiba and Turner Trilogy (r2 = 0.9999), with no significant differences between the mean EOE results (t-test, p = 0.30), and the Aqualog Horiba and Shimadzu (r2 = 0.995) fluorometers, with no statistically difference between the EOE results obtained by the two instruments (p = 0.40).

13.
Sci Total Environ ; 657: 1535-1542, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30677919

RESUMO

Spilled oil treated with Corexit dispersant can cause unintended impacts on marine environment systems including altering marine organic matter dynamics; however, impacts on microgels and marine oil snow (MOS) formation are still debated and remain to be fully understood. Extracellular polymeric substances (EPS) are a major source of marine organic carbon for MOS and microgel formation. EPS initial aggregation plays key roles in the oil degrading process and various biogeochemical reactions. Here we used four types of EPS with water accommodated fraction (WAF), chemically-enhanced WAF (CEWAF) and Corexit, to represent potential situations during oil spills and post-application of Corexit. We found that Corexit alone can inhibit EPS aggregation and disperse pre-existing microgels. CEWAF can enhance EPS aggregation with efficiency by up to 80%-100% and more aggregates accumulated within the air-water interface. Additionally, more hydrophobic EPS aggregates showed high resistance to Corexit dispersion while hydrophilic EPS were more sensitive. Effects of oil spills on marine gel particle formation are primarily determined by chemical characteristics (hydrophobicity and protein content) of the constituent EPS. This study offers unique insights for organic particle dynamics and identifies controlling factors for MOS or gel particles associated with oil spills and Corexit dispersant used.


Assuntos
Meio Ambiente , Recuperação e Remediação Ambiental/métodos , Matriz Extracelular de Substâncias Poliméricas/química , Poluição por Petróleo , Petróleo , Organismos Aquáticos/metabolismo , Fitoplâncton/metabolismo , Tensoativos/química
14.
Aquat Toxicol ; 206: 43-53, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30448744

RESUMO

During the 2010 Deepwater Horizon oil spill, the chemical dispersant Corexit was applied over vast areas of the Gulf of Mexico. Marine phytoplankton play a key role in aggregate formation through the production of extracellular polymeric materials (EPS), an important step in the biological carbon pump. This study examined the impacts of oil and dispersants on the composition and physiology of natural marine phytoplankton communities from the Gulf of Mexico during a 72-hour mesocosm experiment and consequences to carbon export. The communities were treated using the water accommodated fraction (WAF) of oil, which was produced by adding Macondo surrogate oil to natural seawater and mixed for 24 h in the dark. A chemically enhanced WAF (CEWAF) was made in a similar manner, but using a mixture of oil and the dispersant Corexit in a 20:1 ratio as well as a diluted CEWAF (DCEWAF). Phytoplankton communities exposed to WAF showed no significant changes in PSII quantum yield (Fv/Fm) or electron transfer rates (ETRmax) compared to Control communities. In contrast, both Fv/Fm and ETRmax declined rapidly in communities treated with either CEWAF or DCEWAF. Analysis of other photophysiological parameters showed that photosystem II (PSII) antenna size and PSII connectivity factor were not altered by exposure to DCEWAF, suggesting that processes downstream of PSII were affected. The eukaryote community composition in each experimental tank was characterized at the end of the 72 h exposure time using 18S rRNA sequencing. Diatoms dominated the communities in both the control and WAF treatments (52 and 56% relative abundance respectively), while in CEWAF and DCEWAF treatments were dominated by heterotrophic Euglenozoa (51 and 84% respectively). Diatoms made up the largest relative contribution to the autotrophic eukaryote community in all treatments. EPS concentration was four times higher in CEWAF tanks compared to other treatments. Changes in particle size distributions (a proxy for aggregates) over time indicated that a higher degree of particle aggregation occurred in both the CEWAF and DCEWAF treatments than the WAF or Controls. Our results demonstrate that chemically dispersed oil has more negative impacts on photophysiology, phytoplankton community structure and aggregation dynamics than oil alone, with potential implications for export processes that affect the distribution and turnover of carbon and oil in the water column.


Assuntos
Lipídeos/toxicidade , Petróleo/toxicidade , Fitoplâncton/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Diatomáceas/efeitos dos fármacos , Golfo do México , Poluição por Petróleo/análise , Água do Mar/química
15.
Sci Total Environ ; 654: 872-877, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30453257

RESUMO

Organic matter export from the euphotic zone is a key component of oceanic carbon (C) and nitrogen (N) cycles. Although interactions between these two cycles are important, studies on geochemical processes to directly connect them are limited. Here we show that sunlight can induce chemical aggregation of dissolved organic matter (DOM) into high N containing photo-aggregates. The size of microgels in natural coastal seawaters increased by18~25% compared to corresponding dark controls. Within a relatively short time (1 h), the C and N sequestered into the photo-aggregates accounted for 10% and 13% of the bulk particulate C and N, respectively. The N/C ratio of the photo-aggregates was two times higher after sunlight irradiation. Furthermore, we show that the aggregation process was dependent on reactive oxygen species (ROS). To accommodate for the different organic material in the marine environment, we monitored the particle size in various extracellular polymeric substances (EPS) and model biopolymers using flow cytometry, dynamic laser scattering, and scanning electron microscopy. We found that proteins play important roles in light-induced aggregation, which is in contrast to previous views that sunlight can break down DOM and interrupt aggregation. The photo-flocculation process involving organic N provides new insights into DOM assembly, bioavailability, and sedimentation, and thus potentially link the C and N cycles.

16.
PLoS One ; 13(12): e0208406, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30521589

RESUMO

Sinking marine oil snow was found to be a major mechanism in the transport of spilled oil from the surface to the deep sea following the Deepwater Horizon (DwH) oil spill. Marine snow formation is primarily facilitated by extracellular polymeric substances (EPS), which are mainly composed of proteins and carbohydrates secreted by microorganisms. While numerous bacteria have been identified to degrade oil, there is a paucity of knowledge on bacteria that produce EPS in response to oil and Corexit exposure in the northern Gulf of Mexico (nGoM). In this study, we isolated bacteria from surface water of the nGoM that grow on oil or Corexit dispersant. Among the 100 strains isolated, nine were identified to produce remarkable amounts of EPS. 16S rRNA gene analysis revealed that six isolates (strains C1, C5, W10, W11, W14, W20) belong to the genus Alteromonas; the others were related to Thalassospira (C8), Aestuariibacter (C12), and Escherichia (W13a). The isolates preferably degraded alkanes (17-77%), over polycyclic aromatic hydrocarbons (0.90-23%). The EPS production was determined in the presence of a water accommodated fraction (WAF) of oil, a chemical enhanced WAF (CEWAF), Corexit, and control. The highest production of visible aggregates was found in Corexit followed by CEWAF, WAF, and control; indicating that Corexit generally enhanced EPS production. The addition of WAF and Corexit did not affect the carbohydrate content, but significantly increased the protein content of the EPS. On the average, WAF and CEWAF treatments had nine to ten times more proteins, and Corexit had five times higher than the control. Our results reveal that Alteromonas and Thalassospira, among the commonly reported bacteria following the DwH spill, produce protein rich EPS that could have crucial roles in oil degradation and marine snow formation. This study highlights the link between EPS production and bacterial oil-degrading capacity that should not be overlooked during spilled oil clearance.


Assuntos
Bactérias/classificação , Matriz Extracelular de Substâncias Poliméricas/microbiologia , Sedimentos Geológicos/microbiologia , Poluição por Petróleo/análise , Alteromonas/classificação , Alteromonas/isolamento & purificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodegradação Ambiental , Carboidratos/análise , DNA Bacteriano/genética , DNA Ribossômico/genética , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Golfo do México , Filogenia , RNA Ribossômico 16S/genética , Rhodospirillaceae/classificação , Rhodospirillaceae/isolamento & purificação
18.
Mar Pollut Bull ; 130: 170-178, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29866543

RESUMO

Phytoplankton alter their macromolecule composition in response to changing environmental conditions. Often these changes are consistent and can be used as indicators to predict their exposure to a given condition. FTIR-spectroscopy is a powerful tool that provides rapid snapshot of microbial samples. We used FTIR to develop signature macromolecular composition profiles of three cultures: Skeletonema costatum, Emiliania huxleyi, and Navicula sp., exposed to chemically enhanced water accommodated oil fraction (CEWAF) in artificial seawater and control. Using a multivariate model created with a Partial Least Square Discriminant Analysis of the FTIR-spectra, classification of CEWAF exposed versus control samples was possible. This model was validated using aggregate samples from a mesocosm study. Analysis of spectra and PCA-loadings plot showed changes to carbohydrates and proteins in response to CEWAF. Overall we developed a robust multivariate model that can be used to identify if a phytoplankton sample has been exposed to oil with dispersant.


Assuntos
Monitoramento Ambiental/métodos , Petróleo/toxicidade , Fitoplâncton/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Carboidratos , Diatomáceas/química , Diatomáceas/efeitos dos fármacos , Análise Discriminante , Haptófitas/química , Haptófitas/efeitos dos fármacos , Modelos Teóricos , Petróleo/análise , Poluição por Petróleo/efeitos adversos , Poluição por Petróleo/análise , Fitoplâncton/química , Análise de Componente Principal , Água do Mar , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
19.
Front Microbiol ; 9: 798, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740422

RESUMO

Extracellular enzymes and extracellular polymeric substances (EPS) play a key role in overall microbial activity, growth and survival in the ocean. EPS, being amphiphilic in nature, can act as biological surfactant in an oil spill situation. Extracellular enzymes help microbes to digest and utilize fractions of organic matter, including EPS, which can stimulate growth and enhance microbial activity. These natural processes might have been altered during the 2010 Deepwater Horizon oil spill due to the presence of hydrocarbon and dispersant. This study aims to investigate the role of bacterial extracellular enzymes during exposure to hydrocarbons and dispersant. Mesocosm studies were conducted using a water accommodated fraction of oil mixed with the chemical dispersant, Corexit (CEWAF) in seawater collected from two different locations in the Gulf of Mexico and corresponding controls (no additions). Activities of five extracellular enzymes typically found in the EPS secreted by the microbial community - α- and ß-glucosidase, lipase, alkaline phosphatase, leucine amino-peptidase - were measured using fluorogenic substrates in three different layers of the mesocosm tanks (surface, water column and bottom). Enhanced EPS production and extracellular enzyme activities were observed in the CEWAF treatment compared to the Control. Higher bacterial and micro-aggregate counts were also observed in the CEWAF treatment compared to Controls. Bacterial genera in the order Alteromonadaceae were the most abundant bacterial 16S rRNA amplicons recovered. Genomes of Alteromonadaceae commonly have alkaline phosphatase and leucine aminopeptidase, therefore they may contribute significantly to the measured enzyme activities. Only Alteromonadaceae and Pseudomonadaceae among bacteria detected here have higher percentage of genes for lipase. Piscirickettsiaceae was abundant; genomes from this order commonly have genes for leucine aminopeptidase. Overall, this study provides insights into the alteration to the microbial processes such as EPS and extracellular enzyme production, and to the microbial community, when exposed to the mixture of oil and dispersant.

20.
Front Microbiol ; 9: 689, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29696005

RESUMO

During the Deepwater Horizon (DWH) oil spill, massive quantities of oil were deposited on the seafloor via a large-scale marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event. The role of chemical dispersants (e.g., Corexit) applied during the DWH oil spill clean-up in helping or hindering the formation of this MOSSFA event are not well-understood. Here, we present the first experiment related to the DWH oil spill to specifically investigate the relationship between microbial community structure, oil and Corexit®, and marine oil-snow in coastal surface waters. We observed the formation of micron-scale aggregates of microbial cells around droplets of oil and dispersant and found that their rate of formation was directly related to the concentration of oil within the water column. These micro-aggregates are potentially important precursors to the formation of larger marine oil-snow particles. Therefore, our observation that Corexit® significantly enhanced their formation suggests dispersant application may play a role in the development of MOSSFA events. We also observed that microbial communities in marine surface waters respond to oil and oil plus Corexit® differently and much more rapidly than previously measured, with major shifts in community composition occurring within only a few hours of experiment initiation. In the oil-amended treatments without Corexit®, this manifested as an increase in community diversity due to the outgrowth of several putative aliphatic- and aromatic-hydrocarbon degrading genera, including phytoplankton-associated taxa. In contrast, microbial community diversity was reduced in mesocosms containing chemically dispersed oil. Importantly, different consortia of hydrocarbon degrading bacteria responded to oil and chemically dispersed oil, indicating that functional redundancy in the pre-spill community likely results in hydrocarbon consumption in both undispersed and dispersed oils, but by different bacterial taxa. Taken together, these data improve our understanding of how dispersants influence the degradation and transport of oil in marine surface waters following an oil spill and provide valuable insight into the early response of complex microbial communities to oil exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA