Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Artigo em Inglês | MEDLINE | ID: mdl-33257553


Temporal variation in natural selection is predicted to strongly impact the evolution and demography of natural populations, with consequences for the rate of adaptation, evolution of plasticity, and extinction risk. Most of the theory underlying these predictions assumes a moving optimum phenotype, with predictions expressed in terms of the temporal variance and autocorrelation of this optimum. However, empirical studies seldom estimate patterns of fluctuations of an optimum phenotype, precluding further progress in connecting theory with observations. To bridge this gap, we assess the evidence for temporal variation in selection on breeding date by modeling a fitness function with a fluctuating optimum, across 39 populations of 21 wild animals, one of the largest compilations of long-term datasets with individual measurements of trait and fitness components. We find compelling evidence for fluctuations in the fitness function, causing temporal variation in the magnitude, but not the direction of selection. However, fluctuations of the optimum phenotype need not directly translate into variation in selection gradients, because their impact can be buffered by partial tracking of the optimum by the mean phenotype. Analyzing individuals that reproduce in consecutive years, we find that plastic changes track movements of the optimum phenotype across years, especially in bird species, reducing temporal variation in directional selection. This suggests that phenological plasticity has evolved to cope with fluctuations in the optimum, despite their currently modest contribution to variation in selection.

BMC Ecol ; 20(1): 70, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33334346


BACKGROUND: Earlier breeding is one of the strongest responses to global change in birds and is a key factor determining reproductive success. In most studies of climate effects, the focus has been on large-scale environmental indices or temperature averaged over large geographical areas, neglecting that animals are affected by the local conditions in their home ranges. In riverine ecosystems, climate change is altering the flow regime, in addition to changes resulting from the increasing demand for renewable and clean hydropower. Together with increasing temperatures, this can lead to shifts in the time window available for successful breeding of birds associated with the riverine habitat. Here, we investigated specifically how the environmental conditions at the territory level influence timing of breeding in a passerine bird with an aquatic lifestyle, the white-throated dipper Cinclus cinclus. We relate daily river discharge and other important hydrological parameters, to a long-term dataset of breeding phenology (1978-2015) in a natural river system. RESULTS: Dippers bred earlier when winter river discharge and groundwater levels in the weeks prior to breeding were high, and when there was little snow in the catchment area. Breeding was also earlier at lower altitudes, although the effect dramatically declined over the period. This suggests that territories at higher altitudes had more open water in winter later in the study period, which permitted early breeding also here. Unexpectedly, the largest effect inducing earlier breeding time was territory river discharge during the winter months and not immediately prior to breeding. The territory river discharge also increased during the study period. CONCLUSIONS: The observed earlier breeding can thus be interpreted as a response to climate change. Measuring environmental variation at the scale of the territory thus provides detailed information about the interactions between organisms and the abiotic environment.

Hidrologia , Passeriformes , Animais , Cruzamento , Mudança Climática , Ecossistema
Ecol Evol ; 8(8): 4065-4073, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29721280


Interactions between birds and fish are often overlooked in aquatic ecosystems. We studied the influence of Atlantic salmon and brown trout on the breeding population size and reproductive output of the white-throated dipper in a Norwegian river. Acidic precipitation led to the extinction of salmon, but salmon recolonized after liming was initiated in 1991. We compared the dipper population size and reproductive output before (1978-1992) and after (1993-2014) salmon recolonization. Despite a rapid and substantial increase in juvenile salmon, the breeding dipper population size and reproductive output were not influenced by juvenile salmon, trout, or total salmonid density. This might be due to different feeding strategies in salmonids and dippers, where salmonids are mainly feeding on drift, while the dipper is a benthic feeder. The correlation between the size of the dipper population upstream and downstream of a salmonid migratory barrier was similar before and after recolonization, indicating that the downstream territories were not less attractive after the recolonization of salmon. Upstream dipper breeding success rates declined before the recolonization event and increased after, indicating improved water quality due to liming, and increasing invertebrate prey abundances and biodiversity. Surprisingly, upstream the migratory barrier, juvenile trout had a weak positive effect on the dipper population size, indicating that dippers may prey upon small trout. It is possible that wider downstream reaches might have higher abundances of alternative food, rending juvenile trout unimportant as prey. Abiotic factors such as winter temperatures and acidic precipitation with subsequent liming, potentially mediated by prey abundance, seem to play the most important role in the life history of the dipper.

Int J Biometeorol ; 55(6): 797-804, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21710281


To study the ecological and evolutionary effects of climate change on timing of annual events, scientists need access to data that have been collected over long time periods. High-quality long-term phenology data are rare and costly to obtain and there is therefore a need to extract this information from other available data sets. Many long-term studies on breeding birds include detailed information on individually marked parents and offspring, but do not include information on timing of breeding. Here, we demonstrate how a study of repeated standard measurements of white-throated dipper Cinclus cinclus nestlings in our study system in southernmost Norway can be used for modeling nestling growth, and how this statistical model can be used to estimate timing of breeding for birds with sparser data. We also evaluate how the accuracies of nestling growth models based on different morphological traits (mass and feather length) differ depending on the nestling age, present user guidelines and demonstrate how they can be applied to an independent data set. In conclusion, the approach presented is likely to be useful for a wide variety of species, even if the preferred measurement may differ between species.

Evolução Biológica , Ecossistema , Comportamento de Nidação/fisiologia , Passeriformes/fisiologia , Animais , Peso Corporal , Cruzamento , Mudança Climática , Modelos Biológicos , Modelos Estatísticos , Noruega , Passeriformes/crescimento & desenvolvimento , Fatores de Tempo
Proc Biol Sci ; 270(1531): 2397-404, 2003 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-14667357


Latitudinal gradients in population dynamics can arise through regional variation in the deterministic components of the population dynamics and the stochastic factors. Here, we demonstrate an increase with latitude in the contribution of a large-scale climate pattern, the North Atlantic Oscillation (NAO), to the fluctuations in size of populations of two European hole-nesting passerine species. However, this influence of climate induced different latitudinal gradients in the population dynamics of the two species. In the great tit the proportion of the variability in the population fluctuations explained by the NAO increased with latitude, showing a larger impact of climate on the population fluctuations of this species at higher latitudes. In contrast, no latitudinal gradient was found in the relative contribution of climate to the variability of the pied flycatcher populations because the total environmental stochasticity increased with latitude. This shows that the population ecological consequences of an expected climate change will depend on how climate affects the environmental stochasticity in the population process. In both species, the effects will be larger in those parts of Europe where large changes in climate are expected.

Clima , Meio Ambiente , Modelos Biológicos , Aves Canoras/fisiologia , Animais , Europa (Continente) , Geografia , Dinâmica Populacional