Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Molecules ; 26(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34443598


Apocynin (APO) is a known multi-enzymatic complexed compound, employed as a viable NADPH oxidase (NOX) inhibitor, extensively used in both traditional and modern-day therapeutic strategies to combat neuronal disorders. However, its therapeutic efficacy is limited by lower solubility and lesser bioavailability; thus, a suitable nanocarrier system to overcome such limitations is needed. The present study is designed to fabricate APO-loaded polymeric nanoparticles (APO-NPs) to enhance its therapeutic efficacy and sustainability in the biological system. The optimized APO NPs in the study exhibited 103.6 ± 6.8 nm and -13.7 ± 0.43 mV of particle size and zeta potential, respectively, along with further confirmation by TEM. In addition, the antioxidant (AO) abilities quantified by DPPH and nitric oxide scavenging assays exhibited comparatively higher AO potential of APO-NPs than APO alone. An in-vitro release profile displayed a linear diffusion pattern of zero order kinetics for APO from the NPs, followed by its cytotoxicity evaluation on the PC12 cell line, which revealed minimal toxicity with higher cell viability, even after treatment with a stress inducer (H2O2). The stability of APO-NPs after six months showed minimal AO decline in comparison to APO only, indicating that the designed nano-formulation enhanced therapeutic efficacy for modulating NOX-mediated ROS generation.

Acetofenonas/química , Acetofenonas/farmacologia , Peróxido de Hidrogênio/farmacologia , NADPH Oxidases/metabolismo , Nanopartículas/química , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Neurônios/citologia , Neurônios/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Células PC12 , Ratos
Int J Biol Macromol ; 151: 1240-1249, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31751684


The emergence and spread of multidrug-resistant strains of Klebsiella pneumoniae is a major concern that necessitates the development of unique therapeutics. The essential requirement of serine acetyltransferase (SAT/CysE) for survival of several human pathogens makes it a very promising target for inhibitor designing and drug discovery. In this study, as an initial step to structure-based drug discovery, CysE from K. pneumonia was structurally and biochemically characterized. Subsequently, blind docking of selected natural products into the X-ray crystallography determined 3D structure of the target was carried out. Experimental validation of the inhibitory potential of the top-scorers established quercetin as an uncompetitive inhibitor of Kpn CysE. Molecular dynamics simulations carried out to elucidate the binding mode of quercetin reveal that this small molecule binds at the trimer-trimer interface of hexameric CysE, a site physically distinct from the active site of the enzyme. Detailed analysis of conformational differences incurred in Kpn CysE structure on binding to quercetin provides mechanistic understanding of allosteric modulation. Binding of quercetin to CysE leads to conformation changes in the active site loops and proximal loops that affect its internal dynamics and consequently its affinity for substrate/co-factor binding, justifying the reduced enzyme activity.

Antibacterianos/química , Klebsiella pneumoniae/enzimologia , Serina O-Acetiltransferase/química , Regulação Alostérica/efeitos dos fármacos , Antibacterianos/farmacologia , Clonagem Molecular , Estabilidade Enzimática , Expressão Gênica , Humanos , Cinética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Desnaturação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Serina O-Acetiltransferase/antagonistas & inibidores , Serina O-Acetiltransferase/genética , Serina O-Acetiltransferase/isolamento & purificação , Relação Estrutura-Atividade