Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
J Synchrotron Radiat ; 26(Pt 3): 785-792, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074443


The successful design, installation and operation of a high spatial resolution X-ray photoelectron spectrometer at the Swiss Light Source is presented. In this instrument, a Fresnel zone plate is used to focus an X-ray beam onto the sample and an electron analyzer positioned at 45° with respect to the incoming beam direction is used to collect photoelectrons from the backside of the sample. By raster scanning the sample, transmitted current, X-ray absorption and X-ray photoemission maps can be simultaneously acquired. This work demonstrates that chemical information can be extracted with micrometre resolution; the results suggest that a spatial resolution better than 100 nm can be achieved with this approach in future. This kind of photoelectron spectromicroscope will allow in situ measurements with high spatial resolution also under ambient pressure conditions (in the millibar range). Element-specific X-ray photoemission maps can be obtained before and while exposing the sample to gas/gas mixtures to show morphological and chemical changes of the surface.

Nanotechnology ; 27(23): 235705, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27146329


The combination of complementary measurement techniques has become a frequent approach to improve scientific knowledge. Pairing of the high lateral resolution scanning force microscopy (SFM) with the spectroscopic information accessible through scanning transmission soft x-ray microscopy (STXM) permits assessing physical and chemical material properties with high spatial resolution. We present progress from the NanoXAS instrument towards using an SFM probe as an x-ray detector for STXM measurements. Just by the variation of one parameter, the SFM probe can be utilised to detect either sample photo-emitted electrons or transmitted photons. This allows the use of a single probe to detect electrons, photons and physical forces of interest. We also show recent progress and demonstrate the current limitations of using a high aspect ratio coaxial SFM probe to detect photo-emitted electrons with very high lateral resolution. Novel probe designs are proposed to further progress in using an SFM probe as a STXM detector.

Nanotechnology ; 23(47): 475708, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23117254


A combined x-ray transmission and scanning force microscope setup (NanoXAS) recently installed at a dedicated beamline of the Swiss Light Source combines complementary experimental techniques to access chemical and physical sample properties with nanometer scale resolution. While scanning force microscopy probes physical properties such as sample topography, local mechanical properties, adhesion, electric and magnetic properties on lateral scales even down to atomic resolution, scanning transmission x-ray microscopy offers direct access to the local chemical composition, electronic structure and magnetization. Here we present three studies which underline the advantages of complementary access to nanoscale properties in prototype thin film samples.