Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 12(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34680972

RESUMO

Regular exercise can upgrade the efficiency of the immune system and beneficially alter the composition of the gastro-intestinal microbiome. We tested the hypothesis that active athletes have a more diverse microbiome than sedentary subjects, which could provide better protection against COVID-19 during infection. Twenty active competing athletes (CA) (16 male and 4 females of the national first and second leagues), aged 24.15 ± 4.7 years, and 20 sedentary subjects (SED) (15 male and 5 females), aged 27.75 ± 7.5 years, who had been diagnosed as positive for COVID-19 by a PCR test, served as subjects for the study. Fecal samples collected five to eight days after diagnosis and three weeks after a negative COVID-19 PCR test were used for microbiome analysis. Except for two individuals, all subjects reported very mild and/or mild symptoms of COVID-19 and stayed at home under quarantine. Significant differences were not found in the bacterial flora of trained and untrained subjects. On the other hand, during COVID-19 infection, at the phylum level, the relative abundance of Bacteroidetes was elevated during COVID-19 compared to the level measured three weeks after a negative PCR test (p < 0.05) when all subjects were included in the statistical analysis. Since it is known that Bacteroidetes can suppress toll-like receptor 4 and ACE2-dependent signaling, thus enhancing resistance against pro-inflammatory cytokines, it is suggested that Bacteroidetes provide protection against severe COVID-19 infection. There is no difference in the microbiome bacterial flora of trained and untrained subjects during and after a mild level of COVID-19 infection.


Assuntos
Atletas , Bacteroidetes/crescimento & desenvolvimento , COVID-19/microbiologia , Microbioma Gastrointestinal , Comportamento Sedentário , Adulto , Bacteroidetes/classificação , COVID-19/prevenção & controle , Feminino , Humanos , Masculino , SARS-CoV-2
2.
Calcif Tissue Int ; 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34505170

RESUMO

The age-related decline in muscle function, particularly muscle power, is associated with increased risk of important clinical outcomes. Physical activity is an important determinant of muscle function, and different types of physical activity e.g. power-based versus endurance-based exercise appear to have differential effects on muscle power. Cross-sectional studies suggest that participation in power-based exercise is associated with greater muscle power across adulthood but this has not been investigated longitudinally. We recruited eighty-nine male and female power and endurance master athletes (sprint and distance runners respectively, baseline age 35-90y). Using jumping mechanography, we measured lower limb muscle function during a vertical jump including at least two testing sessions longitudinally over 4.5 ± 2.4y. We examined effects of time, discipline (power/endurance) and sex in addition to two- and three-way interactions using linear mixed-effects models. Peak relative power, relative force and jump height, but not Esslingen Fitness Index (indicating peak power relative to sex and age-matched reference data) declined with time. Peak power, force, height and EFI were greater in power than endurance athletes. There were no sex, discipline or sex*discipline interactions with time for any variable, suggesting that changes were similar over time for athletes of both sexes and disciplines. Advantages in lower limb muscle function in power athletes were maintained with time, in line with previous cross-sectional studies. These results suggest that improvements in lower limb function in less active older individuals following power-based training persist with continued adherence, although this requires further investigation in interventional studies.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34546024

RESUMO

BACKGROUND: Both hypertension and age-related impairment of the cardiac condition are known to be improved by regular physical training. As relatively few studies have been reported about the older, hypertensive patients, the aim of this study was to establish cardiac benefits of active lifestyle in these subjects. METHODS: Two-dimensionally guided M-mode, Doppler- and tissue Doppler echocardiography was performed in 199 normo- and hypertensive, active and sedentary older (age>60 yrs.) men (111) and women (88). Results were compared either by ANOVA, or by Kruskall-Wallis test. RESULTS: The left ventricular muscle index (LVMI), which is higher in young active than in sedentary persons, proved to be smaller in the active than sedentary older subjects: men normotensives: actives 83 vs. sedentary ones 98, hypertensives: actives 88 vs. sedentary ones 107, women normotensives: actives 77 vs. sedentary ones 89 g/m3. Diastolic function was better in the active groups demonstrated both by the ratio of the early to atrial peak blood flow velocities (men: normotensives: actives 1.03 vs. sedentary ones 0.76, women normotensives: actives 1.21 vs. sedentary ones 0.9, hypertensives: actives 1.04 vs. sedentary ones 0.88). The tissue Doppler results were also better in the active groups; the difference between the active and sedentary groups was more marked in the normotensive male groups than in the hypertensive ones. CONCLUSIONS: Active lifestyle prevents age-related pathological LV hypertrophy, and attenuates the LV diastolic dysfunction.

4.
Oxid Med Cell Longev ; 2021: 5566880, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211629

RESUMO

Previous studies have not investigated the determinants of resting oxidative stress, including physical fitness, as it relates to redox regulation. The present study therefore was aimed at identifying lifestyle and biological factors that determine resting oxidative stress, including objectively measured physical fitness. In 873 middle-aged and elderly men and women, age and anthropometric parameters, lifestyle-related parameters, medication and supplementation status, physical fitness, biochemical parameters, and nutritional intake status, as well as three plasma oxidative stress markers: protein carbonyl (PC), F2-isoprostane (F2-IsoP), and thiobarbituric acid reactive substances (TBARS), were surveyed and measured. The determinants of PC, F2-IsoP, and TBARS in all participants were investigated using stepwise multiple regression analysis. In PC, age (ß = -0.11, P = 0.002), leg extension power (ß = -0.12, P = 0.008), BMI (ß = 0.12, P = 0.004), and HDL-C (ß = 0.08, P = 0.040) were included in the regression model (adjusted R 2 = 0.018). In the F2-IsoP, smoking status (ß = 0.07, P = 0.060), BMI (ß = 0.07, P = 0.054), and HbA1c (ß = -0.06, P = 0.089) were included in the regression model (adjusted R 2 = 0.006). In TBARS, glucose (ß = 0.18, P < 0.001), CRF (ß = 0.16, P < 0.001), age (ß = 0.15, P < 0.001), TG (ß = 0.11, P = 0.001), antioxidant supplementation (ß = 0.10, P = 0.002), and HbA1c (ß = -0.13, P = 0.004) were included in the regression model (adjusted R 2 = 0.071). In conclusion, the present study showed that age, anthropometric index, lifestyle-related parameters, medication and supplementation status, objectively measured physical fitness, biochemical parameters, and nutritional intake status explain less than 10% of oxidative stress at rest.

5.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299206

RESUMO

Despite the intensive investigation of the molecular mechanism of skeletal muscle hypertrophy, the underlying signaling processes are not completely understood. Therefore, we used an overload model, in which the main synergist muscles (gastrocnemius, soleus) of the plantaris muscle were surgically removed, to cause a significant overload in the remaining plantaris muscle of 8-month-old Wistar male rats. SIRT1-associated pro-anabolic, pro-catabolic molecular signaling pathways, NAD and H2S levels of this overload-induced hypertrophy were studied. Fourteen days of overload resulted in a significant 43% (p < 0.01) increase in the mass of plantaris muscle compared to sham operated animals. Cystathionine-ß-synthase (CBS) activities and bioavailable H2S levels were not modified by overload. On the other hand, overload-induced hypertrophy of skeletal muscle was associated with increased SIRT1 (p < 0.01), Akt (p < 0.01), mTOR, S6 (p < 0.01) and suppressed sestrin 2 levels (p < 0.01), which are mostly responsible for anabolic signaling. Decreased FOXO1 and SIRT3 signaling (p < 0.01) suggest downregulation of protein breakdown and mitophagy. Decreased levels of NAD+, sestrin2, OGG1 (p < 0.01) indicate that the redox milieu of skeletal muscle after 14 days of overloading is reduced. The present investigation revealed novel cellular interactions that regulate anabolic and catabolic processes in the hypertrophy of skeletal muscle.


Assuntos
Cistationina beta-Sintase/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Animais , Hipertrofia/genética , Hipertrofia/metabolismo , Hipertrofia/patologia , Masculino , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuínas/antagonistas & inibidores , Sirtuínas/genética , Sirtuínas/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
6.
Life (Basel) ; 11(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069060

RESUMO

Anterior cruciate ligament injury occurs when the ligament fibers are stretched, partially torn, or completely torn. The authors propose a new injury mechanism for non-contact anterior cruciate ligament injury of the knee. Accordingly, non-contact anterior cruciate ligament injury could not happen without the acute compression microinjury of the entrapped peripheral proprioceptive sensory axons of the proximal tibia. This would occur under an acute stress response when concomitant microcracks-fractures in the proximal tibia evolve due to the same excessive and repetitive compression forces. The primary damage may occur during eccentric contractions of the acceleration and deceleration moments of strenuous or unaccustomed fatiguing exercise bouts. This primary damage is suggested to be an acute compression/crush axonopathy of the proprioceptive sensory neurons in the proximal tibia. As a result, impaired proprioception could lead to injury of the anterior cruciate ligament as a secondary damage, which is suggested to occur during the deceleration phase. Elevated prostaglandin E2, nitric oxide and glutamate may have a critical neuro-modulatory role in the damage signaling in this dichotomous neuronal injury hypothesis that could lead to mechano-energetic failure, lesion and a cascade of inflammatory events. The presynaptic modulation of the primary sensory axons by the fatigued and microdamaged proprioceptive sensory fibers in the proximal tibia induces the activation of N-methyl-D-aspartate receptors in the dorsal horn of the spinal cord, through a process that could have long term relevance due to its contribution to synaptic plasticity. Luteinizing hormone, through interleukin-1ß, stimulates the nerve growth factor-tropomyosin receptor kinase A axis in the ovarian cells and promotes tropomyosin receptor kinase A and nerve growth factor gene expression and prostaglandin E2 release. This luteinizing hormone induced mechanism could further elevate prostaglandin E2 in excess of the levels generated by osteocytes, due to mechanical stress during strenuous athletic moments in the pre-ovulatory phase. This may explain why non-contact anterior cruciate ligament injury is at least three-times more prevalent among female athletes.

7.
J Alzheimers Dis ; 81(3): 1195-1209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33896841

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative illness, with several peripheral pathological signs such as accumulation of amyloid-ß (Aß) plaques in the kidney. Alterations of transforming growth factor ß (TGFß) signaling in the kidney can induce fibrosis, thus disturbing the elimination of Aß. OBJECTIVE: A protective role of increased physical activity has been proven in AD and in kidney fibrosis, but it is not clear whether TGFß signalization is involved in this effect. METHODS: The effects of long-term training on fibrosis were investigated in the kidneys of mice representing a model of AD (B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J) by comparing wild type and AD organs. Alterations of canonical and non-canonical TGFß signaling pathways were followed with PCR, western blot, and immunohistochemistry. RESULTS: Accumulation of collagen type I and interstitial fibrosis were reduced in kidneys of AD mice after long-term training. AD induced the activation of canonical and non-canonical TGFß pathways in non-trained mice, while expression levels of signal molecules of both TGFß pathways became normalized in trained AD mice. Decreased amounts of phosphoproteins with molecular weight corresponding to that of tau and the cleaved C-terminal of AßPP were detected upon exercising, along with a significant increase of PP2A catalytic subunit expression. CONCLUSION: Our data suggest that physical training has beneficial effects on fibrosis formation in kidneys of AD mice and TGFß signaling plays a role in this phenomenon.


Assuntos
Doença de Alzheimer/patologia , Rim/patologia , Condicionamento Físico Animal/fisiologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Fibrose/metabolismo , Fibrose/patologia , Rim/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Placa Amiloide/metabolismo , Placa Amiloide/patologia
8.
Am J Physiol Heart Circ Physiol ; 320(2): H854-H866, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33337964

RESUMO

The prevalence of cardiovascular diseases dramatically increases with age; therefore, striving to maintain a physiological heart function is particularly important. Our aim was to study the voluntary exercise-evoked cardioprotective effects in aged male and female rats, from genetic alterations to changes in heart performance. We divided 20-month-old female and male Wistar rats to control and running groups. After the 12-wk-long experimental period, echocardiographic measurements were performed. Afterwards, hearts were either removed for biochemical measurements or mounted into a Langendorff-perfusion system to detect infarct size. The following genes and their proteins were analyzed from heart: catechol-O-methyltransferase (Comt), endothelin-1 (Esm1), Purkinje cell protein-4 (Pcp4), and osteoglycin (Ogn). Recreational exercise caused functional improvements; however, changes were more prominent in males. Cardiac expression of Comt and Ogn was reduced as a result of exercise in aged males, whereas Pcp4 and Esm1 showed a marked overexpression, along with a markedly improved diastolic function. The key result of this study is that exercise enhanced the expression of the Pcp4 gene and protein, a recently described regulator of calcium balance in cardiomyocytes, and suppressed Comt and Ogn gene expression, which has been associated with impaired cardiac function. In addition, as a result of exercise, a significant improvement was observed in the size of infarct elicited by left anterior descending coronary artery occlusion. Our results clearly show that age and sex-dependent changes were both apparent in key proteins linked to cardiovascular physiology. Exercise-moderated fundamental genetic alterations may have contributed to the functional adaptation of the heart.NEW & NOTEWORTHY Voluntary exercise has proved to be an effective therapeutic tool to improve cardiac function in aged rats with clearly visible sex differences. Long-term exercise is associated with decreased Ogn and Comt expression and enhanced presence of Pcp4 and Esm1 genes. Sex-dependent changes were also observed in the expression of the cardiovascular key proteins. Fundamental alterations in gene and protein expression may contribute to the improvement of cardiac performance.


Assuntos
Envelhecimento , Regulação da Expressão Gênica , Coração/fisiologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Condicionamento Físico Animal , Corrida , Adaptação Fisiológica , Animais , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Modelos Animais de Doenças , Feminino , Coração/diagnóstico por imagem , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Preparação de Coração Isolado , Masculino , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteoglicanas/genética , Proteoglicanas/metabolismo , Ratos Wistar , Fatores Sexuais
9.
Front Physiol ; 11: 610983, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362583

RESUMO

Lactate is one of the metabolic products of glycolysis. It is widely accepted as an important energy source for many cell types and more recently has been proposed to actively participate in cell-cell communication. Satellite cells (SCs), which are adult skeletal muscle stem cells, are the main players of the skeletal muscle regeneration process. Recent studies have proposed a metabolic switch to increase glycolysis in activated SCs. Moreover, lactate has been shown to affect SCs and myoblasts in vivo and in vitro. In this short review, we describe how metabolic variations relate with SC fate (quiescence, activation, proliferation, migration, differentiation, fusion, and self-renewal), as well as discuss possible relationships between lactate as a metabolite and as a signaling molecule affecting SC fate.

10.
Front Cell Neurosci ; 14: 243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922265

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder with typical amyloid beta (Aß) aggregations. Elimination of the Aß precursors via the kidneys makes the organ a potential factor in the systemic degeneration leading to AD. Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts neuroprotective effects in AD and plays a protective role in kidney pathologies. Increased physical activity is preventive of the formation of AD, but its detailed mechanism and possible connections with PACAP have not been clarified. In the kidneys of AD mice, the effects of physical activity were investigated by comparing wild-type and AD organs. Aß plaque formation was reduced in AD kidneys after increased training (TAD). Mechanotransduction elevated PACAP receptor expression in TAD mice and normalized the protein kinase A (PKA)-mediated pathways. BMP4/BMPR1 elevation activated Smad1 expression and normalized collagen type IV in TAD animals. In conclusion, our data suggest that elevated physical activity can prevent the AD-induced pathological changes in the kidneys via, at least in part, the activation of PACAP-BMP signaling crosstalk.

11.
J Sport Health Sci ; 9(5): 405-414, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32780693

RESUMO

MicroRNAs (miRs) are small regulatory RNA transcripts capable of post-transcriptional silencing of mRNA messages by entering a cellular bimolecular apparatus called RNA-induced silencing complex. miRs are involved in the regulation of cellular processes producing, eliminating or repairing the damage caused by reactive oxygen species, and they are active players in redox homeostasis. Increased mitochondrial biogenesis, function and hypertrophy of skeletal muscle are important adaptive responses to regular exercise. In the present review, we highlight some of the redox-sensitive regulatory roles of miRs.


Assuntos
Adaptação Fisiológica , Exercício Físico/fisiologia , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Oxirredução , Animais , Humanos , Biogênese de Organelas , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
12.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785075

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with protective functions in the central nervous system and various peripheral organs. PACAP has the highest expression level in the testes, among the peripheral organs, and has a positive regulative role in spermatogenesis and in sperm motility. In the present study, we explored testicular degenerative alterations in a mouse model of Alzheimer's disease (AD) (B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J) and demonstrated changes in PACAP-regulated signaling pathways. In addition, the effects of increased physical activity of AD (trained AD (TAD)) mice on testis were also followed. Reduced cell number and decreased thickness of basement membrane were detected in AD samples. These changes were compensated by physical activity. Expression of PACAP receptors and canonical signaling elements such as PKA, P-PKA, PP2A significantly decreased in AD mice, and altered Sox transcription factor expression was also detected. Via this signaling mechanism, physical activity compensated the negative effects of AD on the expression of type IV collagen. Our findings suggest that the testes of AD mice can be a good model of testis degeneration. Moreover, it can be an appropriate organ to follow the effects of various interventions such as physical activity on tissue regeneration and signaling alterations.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Transdução de Sinais/genética , Doenças Testiculares/metabolismo , Testículo/metabolismo , Animais , Contagem de Células , Colágeno Tipo IV/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Condicionamento Físico Animal , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Fatores de Transcrição SOX9/metabolismo , Espermatócitos/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Testículo/patologia
13.
Biogerontology ; 21(6): 807-815, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32812166

RESUMO

It has been demonstrated that physical exercise and probiotic supplementation delay the progress of Alzheimer's Disease (AD) in male APP/PS1TG mice. However, it has also been suggested that both exercise and AD have systemic effects. We have studied the effects of exercise training and probiotic treatment on microbiome and biochemical signalling proteins in the liver. The results suggest that liver is under oxidative stress, since SOD2 levels of APP/PS1 mice were decreased when compared to a wild type of mice. Exercise training prevented this decrease. We did not find significant changes in COX4, SIRT3, PGC-1a or GLUT4 levels, while the changes in pAMPK/AMPK, pmTOR/mTOR, pS6/S6 and NRF2 levels were randomly modulated. The data suggest that exercise and probiotics-induced changes in microbiome do not strongly affect mitochondrial density or protein synthesis-related AMPK/mTOR/S6 pathways in the liver of these animals.


Assuntos
Doença de Alzheimer , Fígado , Microbiota , Condicionamento Físico Animal , Probióticos , Transdução de Sinais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/microbiologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/metabolismo
14.
Scand J Med Sci Sports ; 30(11): 2057-2069, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32706412

RESUMO

The aging-related loss of muscle mass is thought to be partly attributable to motor neuron loss and motor unit remodeling that result in fiber type grouping. We examined fiber type grouping in 19- to 85-year-old athletes and non-athletes and evaluated to which extent any observed grouping is explained by the fiber type composition of the muscle. Since regular physical activity may stimulate reinnervation, we hypothesized that fiber groups are larger in master athletes than in age-matched non-athletes. Fiber type grouping was assessed in m. vastus lateralis biopsies from 22 young (19-27 years) and 35 healthy older (66-82 years) non-athletes, and 14 young (20-29 years), 51 middle-aged (38-65 years), and 31 older (66-85 years) athletes. An "enclosed fiber" was any muscle fiber of a particular type surrounded by fibers of the same type only. A fiber type group was defined as a group of fibers with at least one enclosed fiber. Only type II fiber cross-sectional area (FCSA) showed an age-related decline that was greater in athletes (P < .001) than in non-athletes (P = .012). There was no significant age-related effect on fiber group size or fiber group number in athletes or non-athletes, and the observed grouping was similar to that expected from the fiber type composition. At face value, these observations do 1) neither show evidence for an age-related loss and remodeling of motor units nor 2) improved reinnervation with regular physical activity, but 3) histological examination may not reveal the full extent of aging-related motor unit remodeling.


Assuntos
Envelhecimento/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Esportes/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios Motores/fisiologia , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Lenta/citologia , Músculo Quadríceps/anatomia & histologia , Músculo Quadríceps/inervação , Músculo Quadríceps/fisiologia , Adulto Jovem
15.
Arch Osteoporos ; 15(1): 87, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32524289

RESUMO

We investigated longitudinal changes in tibia bone strength in master power (jumping and sprinting) and endurance (distance) athletes of both sexes. Bone mass but not cross-sectional moment of inertia was better maintained in power than endurance athletes over time, particularly in men and independent of changes in performance. OBJECTIVE: Assessment of effects of sex and athletic discipline (lower limb power events, e.g. sprint running and jumping versus endurance running events) on longitudinal changes in bone strength in masters athletes. METHODS: We examined tibia and fibula bone properties at distal (4% distal-proximal tibia length) and proximal (66% length) sites using peripheral quantitative computed tomography (pQCT) in seventy-one track and field masters athletes (30 male, 41 female, age at baseline 57.0 ± 12.2 years) in a longitudinal cohort study that included at least two testing sessions over a mean period of 4.2 ± 3.1 years. Effects of time, as well as time × sex and time × discipline interactions on bone parameters and calf muscle cross-sectional area (CSA), were examined. RESULTS: Effects of time were sex and discipline-dependent, even following adjustment for enrolment age, sex and changes in muscle CSA and athletic performance. Male sex and participation in power events was associated with better maintenance of tibia bone mineral content (BMC, an indicator of bone compressive strength) at 4% and 66% sites. In contrast, there was no strong evidence of sex or discipline effects on cross-sectional moment of inertia (CSMI, an indicator of bone bending and torsional strength-P > 0.3 for interactions). Similar sex and discipline-specific changes were also observed in the fibula. CONCLUSIONS: Results suggest that male athletes and those participating in lower limb power-based rather than endurance-based disciplines have better maintenance of bone compressive but not bending and torsional strength.


Assuntos
Envelhecimento , Atletas , Densidade Óssea/fisiologia , Osso e Ossos/fisiologia , Corrida/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Exercício Físico , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Esportes
16.
Neural Regen Res ; 15(11): 1981-1985, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32394945

RESUMO

Cells are constantly subjected to cytotoxic and genotoxic insults resulting in the accumulation of unrepaired damaged DNA, which leads to neuronal death. In this way, DNA damage has been implicated in the pathogenesis of neurological disorders, cancer, and aging. Lifestyle factors, such as physical exercise, are neuroprotective and increase brain function by improving cognition, learning, and memory, in addition to regulating the cellular redox milieu. Several mechanisms are associated with the effects of exercise in the brain, such as reduced production of oxidants, up-regulation of antioxidant capacity, and a consequent decrease in nuclear DNA damage. Furthermore, physical exercise is a potential strategy for further DNA damage repair. However, the neuroplasticity molecules that respond to different aspects of physical exercise remain unknown. In this review, we discuss the influence of exercise on DNA damage and adjacent mechanisms in the brain. We discuss the results of several studies that focus on the effects of physical exercise on brain DNA damage.

18.
Biochim Biophys Acta Mol Basis Dis ; 1866(10): 165778, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32222542

RESUMO

Regular exercise induces a wide range of redox system-associated molecular adaptive responses to the nervous system. The intermittent induction of reactive oxygen species (ROS) during acute exercise sessions and the related upregulation of antioxidant/repair and housekeeping systems are associated with improved physiological function. Exercise-induced proliferation and differentiation of neuronal stem cells are ROS dependent processes. The increased production of brain derived neurotrophic factor (BDNF) and the regulation by regular exercise are dependent upon redox sensitive pathways. ROS are causative and associative factors of neurodegenerative diseases and regular exercise provides significant neuroprotective effects against Alzheimer's disease, Parkinson's disease, and hypoxia/reperfusion related disorders. Regular exercise regulates redox homeostasis in the brain with complex multi-level molecular pathways.


Assuntos
Exercício Físico/fisiologia , Doenças Neurodegenerativas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doença de Alzheimer/metabolismo , Animais , Antioxidantes/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Homeostase , Humanos , Hipóxia/metabolismo , Hipóxia-Isquemia Encefálica , Isquemia/metabolismo , Neuroproteção/fisiologia , Oxirredução , Doença de Parkinson/metabolismo , Acidente Vascular Cerebral/metabolismo
19.
Redox Biol ; 35: 101467, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32086007

RESUMO

Cellular energy demands are readily changed during physical exercise resulting in adaptive responses by signaling proteins of metabolic processes, including the NAD+ dependent lysine deacetylase SIRT1. Regular exercise results in systemic adaptation that restores the level of SIRT1 in the kidney, liver, and brain in patients with neurodegenerative diseases, and thereby normalizes cellular metabolic processes to attenuate the severity of these diseases. In skeletal muscle, over-expression of SIRT1 results in enhanced numbers of myonuclei improves the repair process after injury and is actively involved in muscle hypertrophy by up-regulating anabolic and downregulating catabolic processes. The present review discusses the different views of SIRT1 dependent deacetylation of PGC-α.


Assuntos
Exercício Físico , Sirtuína 1 , Humanos , Músculo Esquelético , Sirtuína 1/genética
20.
J Exerc Sci Fit ; 18(2): 47-56, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31889963

RESUMO

Objective: The assessment of motor coordination is a very complex process and demonstrates a high degree of sport specificity. There are a limited number of tests, if any, where results correlate with the success rate of athletes in different sports. Methods: Free style gymnastic exercise (FSGE) and coordination ball dribbling exercise (CBDE) were used to see whether the execution quality of these tests is related to the quality of athletes from team handball, water polo, kayak, rhythmical gymnastics (RG) and aerobics (222 athletes - 75 male, 147 female; 23 non-athletes - 9 male, 14 female). Results: FSGE results related to the quality of performance in all sports (r = -0.232, p < 0.01 in handball, water polo, kayak and r = -0.26, p < 0.05 in aerobics and RG), while CBDE did not. Older players had higher ranking as they had more time to be successful at their sport (r = -0.498, p < 0.01 in handball, water polo, kayak; r = -0.298, p < 0.05 in aerobics and RG). The scores of FSGE were independent from the age and gender of the subjects. Conclusions: The main findings were: (i) that athletes did significantly better than the controls in both tests; (ii) RG and aerobics athletes did better on the FSGE than handball, water polo players and kayakers; (iii) handball players did better than kayakers, RG and aerobics athletes on the CBDE test; and (iv) better ranked athletes performed better on the FGSE test. Therefore, FSGE test appears to be a reliable test to assess coordination in variety of sport and different levels of sport performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...