Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Swiss Med Wkly ; 151: w30013, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34519460

RESUMO

AIMS: Previous studies found increased cardiovascular mortality during hot days, while emergency hospital admissions were decreasing. We explored potential underlying reasons by analysing clinically similar cardiovascular disease groups taking into account primary, underlying and immediate causes of death. METHODS AND RESULTS: We assessed associations of daytime maximum temperature in relation to cardiovascular deaths and emergency hospital admissions between 1998 and 2016 in Switzerland. We applied conditional quasi-Poisson models with non-linear distributed lag functions to estimate relative risks (RRs) of daily cardiovascular mortality and morbidity for temperature increases from the median (22°C) to the 98th percentile (32°C) of the warm season temperature distribution with 10 days of lag. Cardiovascular mortality (n = 163,856) increased for total cardiovascular disease (RR 1.13, 95% confidence interval [CI] 1.08-1.19) and the disease groups hypertension (1.18, 1.02-1.38), arrhythmia (1.29, 1.08-1.55), heart failure (1.22, 1.05-1.43) and stroke of unknown origin (1.20, 1.02-1.4). In contrast, emergency hospital admissions (n = 447,577) decreased for total cardiovascular disease (0.91, 0.88-0.94), hypertension (0.72, 0.64-0.81), heart failure (0.83, 0.76-0.9) and myocardial infarction (0.88, 0.82-0.95). Opposing heat effects were most pronounced for disease groups associated with diuretic and antihypertensive drug use, with the age group ≥75 years at highest risk. CONCLUSIONS: Volume depletion and vasodilation from heat stress plausibly explain the risk reduction of heat-related emergency hospital admissions for hypertension and heart failure. Since primary cause of death mostly refers to the underlying chronic disease, the seemingly paradoxical heat-related mortality increase can plausibly be explained by an exacerbation of heat effects by antihypertensive and diuretic drugs. Clinical guidelines should consider recommending strict therapy monitoring of such medication during heatwaves, particularly in the elderly.


Assuntos
Doenças Cardiovasculares , Transtornos de Estresse por Calor , Idoso , Doenças Cardiovasculares/epidemiologia , Temperatura Alta , Humanos , Morbidade , Suíça/epidemiologia
2.
Lancet Planet Health ; 5(9): e579-e587, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34508679

RESUMO

BACKGROUND: Many regions of the world are now facing more frequent and unprecedentedly large wildfires. However, the association between wildfire-related PM2·5 and mortality has not been well characterised. We aimed to comprehensively assess the association between short-term exposure to wildfire-related PM2·5 and mortality across various regions of the world. METHODS: For this time series study, data on daily counts of deaths for all causes, cardiovascular causes, and respiratory causes were collected from 749 cities in 43 countries and regions during 2000-16. Daily concentrations of wildfire-related PM2·5 were estimated using the three-dimensional chemical transport model GEOS-Chem at a 0·25°â€ˆ× 0·25° resolution. The association between wildfire-related PM2·5 exposure and mortality was examined using a quasi-Poisson time series model in each city considering both the current-day and lag effects, and the effect estimates were then pooled using a random-effects meta-analysis. Based on these pooled effect estimates, the population attributable fraction and relative risk (RR) of annual mortality due to acute wildfire-related PM2·5 exposure was calculated. FINDINGS: 65·6 million all-cause deaths, 15·1 million cardiovascular deaths, and 6·8 million respiratory deaths were included in our analyses. The pooled RRs of mortality associated with each 10 µg/m3 increase in the 3-day moving average (lag 0-2 days) of wildfire-related PM2·5 exposure were 1·019 (95% CI 1·016-1·022) for all-cause mortality, 1·017 (1·012-1·021) for cardiovascular mortality, and 1·019 (1·013-1·025) for respiratory mortality. Overall, 0·62% (95% CI 0·48-0·75) of all-cause deaths, 0·55% (0·43-0·67) of cardiovascular deaths, and 0·64% (0·50-0·78) of respiratory deaths were annually attributable to the acute impacts of wildfire-related PM2·5 exposure during the study period. INTERPRETATION: Short-term exposure to wildfire-related PM2·5 was associated with increased risk of mortality. Urgent action is needed to reduce health risks from the increasing wildfires. FUNDING: Australian Research Council, Australian National Health & Medical Research Council.


Assuntos
Poluentes Atmosféricos , Incêndios Florestais , Poluentes Atmosféricos/análise , Austrália , Exposição Ambiental , Material Particulado/análise
3.
Artigo em Inglês | MEDLINE | ID: mdl-34199305

RESUMO

This study presents a novel method for estimating the heat-attributable fractions (HAF) based on the cross-validated best temperature metric. We analyzed the association of eight temperature metrics (mean, maximum, minimum temperature, maximum temperature during daytime, minimum temperature during nighttime, and mean, maximum, and minimum apparent temperature) with mortality and performed the cross-validation method to select the best model in selected cities of Switzerland and South Korea from May to September of 1995-2015. It was observed that HAF estimated using different metrics varied by 2.69-4.09% in eight cities of Switzerland and by 0.61-0.90% in six cities of South Korea. Based on the cross-validation method, mean temperature was estimated to be the best metric, and it revealed that the HAF of Switzerland and South Korea were 3.29% and 0.72%, respectively. Furthermore, estimates of HAF were improved by selecting the best city-specific model for each city, that is, 3.34% for Switzerland and 0.78% for South Korea. To the best of our knowledge, this study is the first to observe the uncertainty of HAF estimation originated from the selection of temperature metric and to present the HAF estimation based on the cross-validation method.


Assuntos
Temperatura Alta , Mortalidade , Cidades , República da Coreia/epidemiologia , Suíça/epidemiologia , Temperatura
4.
Lancet Planet Health ; 5(7): e415-e425, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34245712

RESUMO

BACKGROUND: Exposure to cold or hot temperatures is associated with premature deaths. We aimed to evaluate the global, regional, and national mortality burden associated with non-optimal ambient temperatures. METHODS: In this modelling study, we collected time-series data on mortality and ambient temperatures from 750 locations in 43 countries and five meta-predictors at a grid size of 0·5°â€ˆ× 0·5° across the globe. A three-stage analysis strategy was used. First, the temperature-mortality association was fitted for each location by use of a time-series regression. Second, a multivariate meta-regression model was built between location-specific estimates and meta-predictors. Finally, the grid-specific temperature-mortality association between 2000 and 2019 was predicted by use of the fitted meta-regression and the grid-specific meta-predictors. Excess deaths due to non-optimal temperatures, the ratio between annual excess deaths and all deaths of a year (the excess death ratio), and the death rate per 100 000 residents were then calculated for each grid across the world. Grids were divided according to regional groupings of the UN Statistics Division. FINDINGS: Globally, 5 083 173 deaths (95% empirical CI [eCI] 4 087 967-5 965 520) were associated with non-optimal temperatures per year, accounting for 9·43% (95% eCI 7·58-11·07) of all deaths (8·52% [6·19-10·47] were cold-related and 0·91% [0·56-1·36] were heat-related). There were 74 temperature-related excess deaths per 100 000 residents (95% eCI 60-87). The mortality burden varied geographically. Of all excess deaths, 2 617 322 (51·49%) occurred in Asia. Eastern Europe had the highest heat-related excess death rate and Sub-Saharan Africa had the highest cold-related excess death rate. From 2000-03 to 2016-19, the global cold-related excess death ratio changed by -0·51 percentage points (95% eCI -0·61 to -0·42) and the global heat-related excess death ratio increased by 0·21 percentage points (0·13-0·31), leading to a net reduction in the overall ratio. The largest decline in overall excess death ratio occurred in South-eastern Asia, whereas excess death ratio fluctuated in Southern Asia and Europe. INTERPRETATION: Non-optimal temperatures are associated with a substantial mortality burden, which varies spatiotemporally. Our findings will benefit international, national, and local communities in developing preparedness and prevention strategies to reduce weather-related impacts immediately and under climate change scenarios. FUNDING: Australian Research Council and the Australian National Health and Medical Research Council.


Assuntos
Temperatura Baixa , Temperatura Alta , Austrália , Mudança Climática , Temperatura
5.
Sci Total Environ ; 790: 147958, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34098271

RESUMO

Since the 2003 heatwave in Europe, evidence has been rapidly increasing on the association between extreme temperature and all-cause mortality. Little is known, however, about cause-specific cardiovascular mortality, effect modification by air pollution and aircraft noise, and which population groups are the most vulnerable to extreme temperature. We conducted a time-stratified case-crossover study in Zurich, Switzerland, including all adult cardiovascular deaths between 2000 and 2015 with precise individual exposure estimates at home location. We estimated the risk of 24,884 cardiovascular deaths associated with heat and cold using distributed non-linear lag models. We investigated potential effect modification of temperature-related mortality by fine particles, nitrogen dioxide, and night-time aircraft noise and performed stratified analyses across individual and social characteristics. We found increased risk of mortality for heat (odds ratio OR = 1.28 [95% confidence interval: 1.11-1.49] for 99th percentile of daily Tmean (24 °C) versus optimum temperature at 20 °C) and cold (OR = 1.15 [0.95-1.39], 5th percentile of daily Tmean (-3 °C) versus optimum temperature at 20 °C). Heat-related mortality was particularly strong for myocardial infarctions and hypertension related deaths, and among older women (>75 years). Analysis of effect modification also indicated that older women with lower socio-economic position and education are at higher risk for heat-related mortality. PM2.5 increased the risk of heat-related mortality for heart failure, but not all-cause cardiovascular mortality. This study provides useful information for preventing cause-specific cardiovascular temperature-related mortality in moderate climate zones comparable to Switzerland.


Assuntos
Poluição do Ar , Doenças Cardiovasculares , Adulto , Idoso , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Temperatura Baixa , Estudos Cross-Over , Feminino , Temperatura Alta , Humanos , Mortalidade , Suíça/epidemiologia , Temperatura
6.
Environ Res ; 198: 111227, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33974842

RESUMO

Air temperature has been the most commonly used exposure metric in assessing relationships between thermal stress and mortality. Lack of the high-quality meteorological station data necessary to adequately characterize the thermal environment has been one of the main limitations for the use of more complex thermal indices. Global climate reanalyses may provide an ideal platform to overcome this limitation and define complex heat and cold stress conditions anywhere in the world. In this study, we explored the potential of the Universal Thermal Climate Index (UTCI) based on ERA5 - the latest global climate reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) - as a health-related tool. Employing a novel ERA5-based thermal comfort dataset ERA5-HEAT, we investigated the relationships between the UTCI and daily mortality data in 21 cities across 9 European countries. We used distributed lag nonlinear models to assess exposure-response relationships between mortality and thermal conditions in individual cities. We then employed meta-regression models to pool the results for each city into four groups according to climate zone. To evaluate the performance of ERA5-based UTCI, we compared its effects on mortality with those for the station-based UTCI data. In order to assess the additional effect of the UTCI, the performance of ERA5-and station-based air temperature (T) was evaluated. Whilst generally similar heat- and cold-effects were observed for the ERA5-and station-based data in most locations, the important role of wind in the UTCI appeared in the results. The largest difference between any two datasets was found in the Southern European group of cities, where the relative risk of mortality at the 1st percentile of daily mean temperature distribution (1.29 and 1.30 according to the ERA5 vs station data, respectively) considerably exceeded the one for the daily mean UTCI (1.19 vs 1.22). These differences were mainly due to the effect of wind in the cold tail of the UTCI distribution. The comparison of exposure-response relationships between ERA5-and station-based data shows that ERA5-based UTCI may be a useful tool for definition of life-threatening thermal conditions in locations where high-quality station data are not available.


Assuntos
Clima , Temperatura Alta , Cidades , Europa (Continente)/epidemiologia , Vento
7.
Lancet Planet Health ; 5(4): e191-e199, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33838734

RESUMO

BACKGROUND: Epidemiological evidence on short-term association between ambient carbon monoxide (CO) and mortality is inconclusive and limited to single cities, regions, or countries. Generalisation of results from previous studies is hindered by potential publication bias and different modelling approaches. We therefore assessed the association between short-term exposure to ambient CO and daily mortality in a multicity, multicountry setting. METHODS: We collected daily data on air pollution, meteorology, and total mortality from 337 cities in 18 countries or regions, covering various periods from 1979 to 2016. All included cities had at least 2 years of both CO and mortality data. We estimated city-specific associations using confounder-adjusted generalised additive models with a quasi-Poisson distribution, and then pooled the estimates, accounting for their statistical uncertainty, using a random-effects multilevel meta-analytical model. We also assessed the overall shape of the exposure-response curve and evaluated the possibility of a threshold below which health is not affected. FINDINGS: Overall, a 1 mg/m3 increase in the average CO concentration of the previous day was associated with a 0·91% (95% CI 0·32-1·50) increase in daily total mortality. The pooled exposure-response curve showed a continuously elevated mortality risk with increasing CO concentrations, suggesting no threshold. The exposure-response curve was steeper at daily CO levels lower than 1 mg/m3, indicating greater risk of mortality per increment in CO exposure, and persisted at daily concentrations as low as 0·6 mg/m3 or less. The association remained similar after adjustment for ozone but was attenuated after adjustment for particulate matter or sulphur dioxide, or even reduced to null after adjustment for nitrogen dioxide. INTERPRETATION: This international study is by far the largest epidemiological investigation on short-term CO-related mortality. We found significant associations between ambient CO and daily mortality, even at levels well below current air quality guidelines. Further studies are warranted to disentangle its independent effect from other traffic-related pollutants. FUNDING: EU Horizon 2020, UK Medical Research Council, and Natural Environment Research Council.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Monóxido de Carbono , Cidades , Humanos
8.
BMJ ; 372: n534, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762259

RESUMO

OBJECTIVE: To evaluate the short term associations between nitrogen dioxide (NO2) and total, cardiovascular, and respiratory mortality across multiple countries/regions worldwide, using a uniform analytical protocol. DESIGN: Two stage, time series approach, with overdispersed generalised linear models and multilevel meta-analysis. SETTING: 398 cities in 22 low to high income countries/regions. MAIN OUTCOME MEASURES: Daily deaths from total (62.8 million), cardiovascular (19.7 million), and respiratory (5.5 million) causes between 1973 and 2018. RESULTS: On average, a 10 µg/m3 increase in NO2 concentration on lag 1 day (previous day) was associated with 0.46% (95% confidence interval 0.36% to 0.57%), 0.37% (0.22% to 0.51%), and 0.47% (0.21% to 0.72%) increases in total, cardiovascular, and respiratory mortality, respectively. These associations remained robust after adjusting for co-pollutants (particulate matter with aerodynamic diameter ≤10 µm or ≤2.5 µm (PM10 and PM2.5, respectively), ozone, sulfur dioxide, and carbon monoxide). The pooled concentration-response curves for all three causes were almost linear without discernible thresholds. The proportion of deaths attributable to NO2 concentration above the counterfactual zero level was 1.23% (95% confidence interval 0.96% to 1.51%) across the 398 cities. CONCLUSIONS: This multilocation study provides key evidence on the independent and linear associations between short term exposure to NO2 and increased risk of total, cardiovascular, and respiratory mortality, suggesting that health benefits would be achieved by tightening the guidelines and regulatory limits of NO2.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Doenças Cardiovasculares/mortalidade , Saúde Global/estatística & dados numéricos , Dióxido de Nitrogênio/toxicidade , Doenças Respiratórias/mortalidade , Saúde da População Urbana/estatística & dados numéricos , Doenças Cardiovasculares/induzido quimicamente , Cidades , Países Desenvolvidos/estatística & dados numéricos , Países em Desenvolvimento/estatística & dados numéricos , Exposição Ambiental/efeitos adversos , Humanos , Modelos Lineares , Doenças Respiratórias/induzido quimicamente
9.
Int J Hyg Environ Health ; 232: 113666, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33296779

RESUMO

BACKGROUND: Cardiovascular effects of environmental noise are a growing concern. However, the evidence remains largely limited to the association between road traffic noise and hypertension and coronary heart diseases. OBJECTIVES: To investigate the association between long-term residential exposure to environmental/transportation noise and the incidence of myocardial infarction (MI) in the adult population living in Montreal. METHODS: An open cohort of adults aged 45 years old and over, living on the island of Montreal and free of MI before entering the cohort was created for the years 2000-2014 with the Quebec Integrated Chronic Disease Surveillance System; a systematic surveillance system from the Canadian province of Quebec starting in 1996. Residential noise exposure was calculated in three ways: 1) total ambient noise levels estimated by Land use regression (LUR) models; 2) road traffic noise estimated by a noise propagation model CadnaA and 3) distances to transportation sources (roads, airport, railways). Incident MI was based on diagnostic codes in hospital admission records. Cox models with time-varying exposures (age as the time axis) were used to estimate the associations with various adjustments (material deprivation indicator, calendar year, nitrogen dioxide, stratification for sex). Indirect adjustment based on ancillary data for smoking was performed. RESULTS: 1,065,414 individuals were followed (total of 9,000,443 person-years) and 40,718 (3.8%) developed MI. We found positive associations between total environmental noise, estimated by LUR models and the incidence of MI. Total noise LUR levels ranged from ~44 to ~79 dBA and varied slightly with the metric used. The adjusted hazard ratios (HRs) (also adjusted for smoking) were 1.12 (95% Confidence Intervals [CI]: 1.08-1.15), 1.11 (95%CI: 1.07-1.14) and 1.10 (95%CI: 1.06-1.14) per 10 dBA noise levels increase respectively in Level Accoustic equivalent 24 h (LAeq24 h), Level day-evening-night (Lden) and night level (Lnight). We found a borderline negative association between road noise levels estimated with CadnaA and MI (HR: 0.99 per 10 dBA; 95%CI: 0.98-1.00). Distances to major roads and highways were not associated with MI while the proximity to railways was positively associated with MI (HR for ≤100 vs > 1000 m: 1.07; 95%CI: 1.01-1.14). A negative association was found with the proximity to the airport noise exposure forecast (NEF25); HR (<1 vs >1000 m) = 0.88 (95%CI: 0.81-0.96). CONCLUSIONS: These associations suggest that exposure to total environmental noise at current urban levels may be related to the incidence of MI. Additional studies with more accurate road noise estimates are needed to explain the counterintuitive associations with road noise and specific transportation sources.

10.
Lancet Planet Health ; 4(11): e512-e521, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33159878

RESUMO

BACKGROUND: Various retrospective studies have reported on the increase of mortality risk due to higher diurnal temperature range (DTR). This study projects the effect of DTR on future mortality across 445 communities in 20 countries and regions. METHODS: DTR-related mortality risk was estimated on the basis of the historical daily time-series of mortality and weather factors from Jan 1, 1985, to Dec 31, 2015, with data for 445 communities across 20 countries and regions, from the Multi-Country Multi-City Collaborative Research Network. We obtained daily projected temperature series associated with four climate change scenarios, using the four representative concentration pathways (RCPs) described by the Intergovernmental Panel on Climate Change, from the lowest to the highest emission scenarios (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5). Excess deaths attributable to the DTR during the current (1985-2015) and future (2020-99) periods were projected using daily DTR series under the four scenarios. Future excess deaths were calculated on the basis of assumptions that warmer long-term average temperatures affect or do not affect the DTR-related mortality risk. FINDINGS: The time-series analyses results showed that DTR was associated with excess mortality. Under the unmitigated climate change scenario (RCP 8.5), the future average DTR is projected to increase in most countries and regions (by -0·4 to 1·6°C), particularly in the USA, south-central Europe, Mexico, and South Africa. The excess deaths currently attributable to DTR were estimated to be 0·2-7·4%. Furthermore, the DTR-related mortality risk increased as the long-term average temperature increased; in the linear mixed model with the assumption of an interactive effect with long-term average temperature, we estimated 0·05% additional DTR mortality risk per 1°C increase in average temperature. Based on the interaction with long-term average temperature, the DTR-related excess deaths are projected to increase in all countries or regions by 1·4-10·3% in 2090-99. INTERPRETATION: This study suggests that globally, DTR-related excess mortality might increase under climate change, and this increasing pattern is likely to vary between countries and regions. Considering climatic changes, our findings could contribute to public health interventions aimed at reducing the impact of DTR on human health. FUNDING: Korea Ministry of Environment.


Assuntos
Mudança Climática/mortalidade , Mortalidade/tendências , Temperatura , Cidades , Temperatura Baixa/efeitos adversos , Saúde Global , Temperatura Alta/efeitos adversos , Humanos , Modelos Lineares , Estudos Retrospectivos , Fatores de Risco , Estações do Ano , Fatores de Tempo
11.
Environ Int ; 145: 106126, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32971416

RESUMO

Reductions of speed limits for road traffic are effective in reducing casualties, and are also increasingly promoted as an effective way to reduce noise exposure. The aim of this study was to estimate the health benefits of the implementation of 30 km/h speed limits in the city of Lausanne (136'077 inhabitants) under different scenarios addressing exposure to noise and road crashes. The study followed a standard methodology for quantitative health impact assessments to derive the number of attributable cases in relation to relevant outcomes. We compared a reference scenario (without any 30 km/h speed limits) to the current situation with partial speed limits and additional scenarios with further implementation of 30 km/h speed limits, including a whole city scenario. Compared to the reference scenario, noise reduction due to the current speed limit situation was estimated to annually prevent 1 cardiovascular death, 72 hospital admissions from cardiovascular disease, 17 incident diabetes cases, 1'127 individuals being highly annoyed and 918 individuals reporting sleep disturbances from noise. Health benefits from a reduction in road traffic crashes were less pronounced (1 severe injury and 4 minor injuries). The whole city speed reduction scenario more than doubled the annual benefits, and was the only scenario that contributed to a reduction in mortality from road traffic crashes (one death per two years). Implementing 30 km/h speed limits in a city yields health benefits due to reduction in road traffic crashes and noise exposure. We found that the benefit from noise reduction was more relevant than safety benefits.


Assuntos
Acidentes de Trânsito , Avaliação do Impacto na Saúde , Acidentes de Trânsito/prevenção & controle , Cidades , Humanos , Suíça
12.
BMJ ; 368: m108, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041707

RESUMO

OBJECTIVE: To assess short term mortality risks and excess mortality associated with exposure to ozone in several cities worldwide. DESIGN: Two stage time series analysis. SETTING: 406 cities in 20 countries, with overlapping periods between 1985 and 2015, collected from the database of Multi-City Multi-Country Collaborative Research Network. POPULATION: Deaths for all causes or for external causes only registered in each city within the study period. MAIN OUTCOME MEASURES: Daily total mortality (all or non-external causes only). RESULTS: A total of 45 165 171 deaths were analysed in the 406 cities. On average, a 10 µg/m3 increase in ozone during the current and previous day was associated with an overall relative risk of mortality of 1.0018 (95% confidence interval 1.0012 to 1.0024). Some heterogeneity was found across countries, with estimates ranging from greater than 1.0020 in the United Kingdom, South Africa, Estonia, and Canada to less than 1.0008 in Mexico and Spain. Short term excess mortality in association with exposure to ozone higher than maximum background levels (70 µg/m3) was 0.26% (95% confidence interval 0.24% to 0.28%), corresponding to 8203 annual excess deaths (95% confidence interval 3525 to 12 840) across the 406 cities studied. The excess remained at 0.20% (0.18% to 0.22%) when restricting to days above the WHO guideline (100 µg/m3), corresponding to 6262 annual excess deaths (1413 to 11 065). Above more lenient thresholds for air quality standards in Europe, America, and China, excess mortality was 0.14%, 0.09%, and 0.05%, respectively. CONCLUSIONS: Results suggest that ozone related mortality could be potentially reduced under stricter air quality standards. These findings have relevance for the implementation of efficient clean air interventions and mitigation strategies designed within national and international climate policies.


Assuntos
Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Saúde Global/estatística & dados numéricos , Mortalidade , Ozônio/efeitos adversos , Poluição do Ar/análise , Cidades/estatística & dados numéricos , Mudança Climática/mortalidade , Exposição Ambiental/normas , Política Ambiental , Humanos , Cooperação Internacional , Ozônio/análise , Estações do Ano
13.
Environ Health Perspect ; 127(11): 117007, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31769300

RESUMO

BACKGROUND: Previous literature suggests that higher ambient temperature may play a role in increasing the risk of suicide. However, no multi-country study has explored the shape of the association and the role of moderate and extreme heat across different locations. OBJECTIVES: We examined the short-term temperature-suicide relationship using daily time-series data collected for 341 locations in 12 countries for periods ranging from 4 to 40 y. METHODS: We conducted a two-stage meta-analysis. First, we performed location-specific time-stratified case-crossover analyses to examine the temperature-suicide association for each location. Then, we used a multivariate meta-regression to combine the location-specific lag-cumulative nonlinear associations across all locations and by country. RESULTS: A total of 1,320,148 suicides were included in this study. Higher ambient temperature was associated with an increased risk of suicide in general, and we observed a nonlinear association (inverted J-shaped curve) with the highest risk at 27°C. The relative risk (RR) for the highest risk was 1.33 (95% CI: 1.30, 1.36) compared with the risk at the first percentile. Country-specific results showed that the nonlinear associations were more obvious in northeast Asia (Japan, South Korea, and Taiwan). The temperature with the highest risk of suicide ranged from the 87th to 88th percentiles in the northeast Asian countries, whereas this value was the 99th percentile in Western countries (Canada, Spain, Switzerland, the UK, and the United States) and South Africa, where nearly linear associations were estimated. The country-specific RRs ranged from 1.31 (95% CI: 1.19, 1.44) in the United States to 1.65 (95% CI: 1.40, 1.93) in Taiwan, excluding countries where the results were substantially uncertain. DISCUSSION: Our findings showed that the risk of suicide increased with increasing ambient temperature in many countries, but to varying extents and not necessarily linearly. This temperature-suicide association should be interpreted cautiously, and further evidence of the relationship and modifying factors is needed. https://doi.org/10.1289/EHP4898.


Assuntos
Temperatura Alta/efeitos adversos , Suicídio/estatística & dados numéricos , Brasil/epidemiologia , Canadá/epidemiologia , Cidades , Humanos , Japão/epidemiologia , Filipinas/epidemiologia , República da Coreia/epidemiologia , Risco , África do Sul/epidemiologia , Espanha/epidemiologia , Suíça/epidemiologia , Taiwan/epidemiologia , Reino Unido/epidemiologia , Estados Unidos/epidemiologia , Vietnã/epidemiologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-31600891

RESUMO

It is unclear which noise exposure time window and noise characteristics during nighttime are most detrimental for sleep quality in real-life settings. We conducted a field study with 105 volunteers wearing a wrist actimeter to record their sleep during seven days, together with concurrent outdoor noise measurements at their bedroom window. Actimetry-recorded sleep latency increased by 5.6 min (95% confidence interval (CI): 1.6 to 9.6 min) per 10 dB(A) increase in noise exposure during the first hour after bedtime. Actimetry-assessed sleep efficiency was significantly reduced by 2%-3% per 10 dB(A) increase in measured outdoor noise (Leq, 1h) for the last three hours of sleep. For self-reported sleepiness, noise exposure during the last hour prior to wake-up was most crucial, with an increase in the sleepiness score of 0.31 units (95% CI: 0.08 to 0.54) per 10 dB(A) Leq,1h. Associations for estimated indoor noise were not more pronounced than for outdoor noise. Taking noise events into consideration in addition to equivalent sound pressure levels (Leq) only marginally improved the statistical models. Our study provides evidence that matching the nighttime noise exposure time window to the individual's diurnal sleep-wake pattern results in a better estimate of detrimental nighttime noise effects on sleep. We found that noise exposure at the beginning and the end of the sleep is most crucial for sleep quality.


Assuntos
Exposição Ambiental/análise , Ruído dos Transportes , Autorrelato , Sono , Adulto , Cafeína , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vigília
16.
Environ Health Perspect ; 127(9): 97007, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31553655

RESUMO

BACKGROUND: There is strong experimental evidence that physiologic stress from high temperatures is greater if humidity is higher. However, heat indices developed to allow for this have not consistently predicted mortality better than dry-bulb temperature. OBJECTIVES: We aimed to clarify the potential contribution of humidity an addition to temperature in predicting daily mortality in summer by using a large multicountry dataset. METHODS: In 445 cities in 24 countries, we fit a time-series regression model for summer mortality with a distributed lag nonlinear model (DLNM) for temperature (up to lag 3) and supplemented this with a range of terms for relative humidity (RH) and its interaction with temperature. City-specific associations were summarized using meta-analytic techniques. RESULTS: Adding a linear term for RH to the temperature term improved fit slightly, with an increase of 23% in RH (the 99th percentile anomaly) associated with a 1.1% [95% confidence interval (CI): 0.8, 1.3] decrease in mortality. Allowing curvature in the RH term or adding terms for interaction of RH with temperature did not improve the model fit. The humidity-related decreased risk was made up of a positive coefficient at lag 0 outweighed by negative coefficients at lags of 1-3 d. Key results were broadly robust to small model changes and replacing RH with absolute measures of humidity. Replacing temperature with apparent temperature, a metric combining humidity and temperature, reduced goodness of fit slightly. DISCUSSION: The absence of a positive association of humidity with mortality in summer in this large multinational study is counter to expectations from physiologic studies, though consistent with previous epidemiologic studies finding little evidence for improved prediction by heat indices. The result that there was a small negative average association of humidity with mortality should be interpreted cautiously; the lag structure has unclear interpretation and suggests the need for future work to clarify. https://doi.org/10.1289/EHP5430.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Temperatura Alta , Umidade , Mortalidade/tendências , Cidades , Humanos , Dinâmica não Linear , Estações do Ano
17.
N Engl J Med ; 381(8): 705-715, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31433918

RESUMO

BACKGROUND: The systematic evaluation of the results of time-series studies of air pollution is challenged by differences in model specification and publication bias. METHODS: We evaluated the associations of inhalable particulate matter (PM) with an aerodynamic diameter of 10 µm or less (PM10) and fine PM with an aerodynamic diameter of 2.5 µm or less (PM2.5) with daily all-cause, cardiovascular, and respiratory mortality across multiple countries or regions. Daily data on mortality and air pollution were collected from 652 cities in 24 countries or regions. We used overdispersed generalized additive models with random-effects meta-analysis to investigate the associations. Two-pollutant models were fitted to test the robustness of the associations. Concentration-response curves from each city were pooled to allow global estimates to be derived. RESULTS: On average, an increase of 10 µg per cubic meter in the 2-day moving average of PM10 concentration, which represents the average over the current and previous day, was associated with increases of 0.44% (95% confidence interval [CI], 0.39 to 0.50) in daily all-cause mortality, 0.36% (95% CI, 0.30 to 0.43) in daily cardiovascular mortality, and 0.47% (95% CI, 0.35 to 0.58) in daily respiratory mortality. The corresponding increases in daily mortality for the same change in PM2.5 concentration were 0.68% (95% CI, 0.59 to 0.77), 0.55% (95% CI, 0.45 to 0.66), and 0.74% (95% CI, 0.53 to 0.95). These associations remained significant after adjustment for gaseous pollutants. Associations were stronger in locations with lower annual mean PM concentrations and higher annual mean temperatures. The pooled concentration-response curves showed a consistent increase in daily mortality with increasing PM concentration, with steeper slopes at lower PM concentrations. CONCLUSIONS: Our data show independent associations between short-term exposure to PM10 and PM2.5 and daily all-cause, cardiovascular, and respiratory mortality in more than 600 cities across the globe. These data reinforce the evidence of a link between mortality and PM concentration established in regional and local studies. (Funded by the National Natural Science Foundation of China and others.).


Assuntos
Poluição do Ar/efeitos adversos , Exposição Ambiental/análise , Mortalidade , Material Particulado/efeitos adversos , Poluição do Ar/análise , Doenças Cardiovasculares/mortalidade , Causas de Morte , Exposição Ambiental/efeitos adversos , Exposição Ambiental/legislação & jurisprudência , Saúde Global , Humanos , Tamanho da Partícula , Material Particulado/análise , Doenças Respiratórias/mortalidade , Risco
18.
Environ Health ; 18(1): 66, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31412877

RESUMO

BACKGROUND: Only a few studies have examined the impact of a particular heat event on morbidity. The aim of this study was to evaluate the impact of the warm summer 2015 on emergency hospital admissions (EHA) in Switzerland. The summer 2015 ranks as the second hottest after 2003 in the history of temperature observation in Switzerland. METHODS: Daily counts of EHA for various disease categories during summer 2015 were analyzed in relation to previous summers in Switzerland. Excess EHA for non-external causes during summer 2015 (June-August) were estimated by age group, gender, geographic region and disease category by comparing observed and expected cases. The latter were predicted from strata-specific quasi-Poisson regression models fitted to the daily counts of EHA for years 2012-2014. RESULTS: Over the three summer months in 2015, an estimated 2.4% (95% confidence interval [CI] 1.6-3.2%) increase in EHA (non-external causes) occurred corresponding to 2,768 excess cases. Highest excess EHA estimates were found in the warmest regions (Ticino [8.4%, 95% CI 5.1-11.7%] and the Lake Geneva region [4.8%, 95% CI 3.0-6.7%]) and among the elderly population aged ≥75 years (5.1%, 95% CI 3.7-6.5%). Increased EHA during days with most extreme temperatures were observed for influenza and pneumonia, certain infectious diseases and diseases of the genitourinary system. CONCLUSIONS: Summer 2015 had a considerable impact on EHA in Switzerland. The daily number of EHA mainly increased due to diseases not commonly linked to heat-related mortality. No excess morbidity was found for cardiovascular and most respiratory diseases. This suggests that current public health interventions should be reevaluated to prevent both heat-related illness and deaths.


Assuntos
Hospitalização/estatística & dados numéricos , Temperatura Alta/efeitos adversos , Morbidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Estações do Ano , Suíça/epidemiologia , Adulto Jovem
19.
Environ Int ; 131: 105027, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351381

RESUMO

An increase in the global health burden of temperature was projected for 459 locations in 28 countries worldwide under four representative concentration pathway scenarios until 2099. We determined that the amount of temperature increase for each 100 ppm increase in global CO2 concentrations is nearly constant, regardless of climate scenarios. The overall average temperature increase during 2010-2099 is largest in Canada (1.16 °C/100 ppm) and Finland (1.14 °C/100 ppm), while it is smallest in Ireland (0.62 °C/100 ppm) and Argentina (0.63 °C/100 ppm). In addition, for each 1 °C temperature increase, the amount of excess mortality is increased largely in tropical countries such as Vietnam (10.34%p/°C) and the Philippines (8.18%p/°C), while it is decreased in Ireland (-0.92%p/°C) and Australia (-0.32%p/°C). To understand the regional variability in temperature increase and mortality, we performed a regression-based modeling. We observed that the projected temperature increase is highly correlated with daily temperature range at the location and vulnerability to temperature increase is affected by health expenditure, and proportions of obese and elderly population.


Assuntos
Saúde Global , Aquecimento Global , Previsões , Humanos , Mortalidade/tendências , Temperatura
20.
Int J Epidemiol ; 48(4): 1101-1112, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30815699

RESUMO

BACKGROUND: The health burden associated with temperature is expected to increase due to a warming climate. Populations living in cities are likely to be particularly at risk, but the role of urban characteristics in modifying the direct effects of temperature on health is still unclear. In this contribution, we used a multi-country dataset to study effect modification of temperature-mortality relationships by a range of city-specific indicators. METHODS: We collected ambient temperature and mortality daily time-series data for 340 cities in 22 countries, in periods between 1985 and 2014. Standardized measures of demographic, socio-economic, infrastructural and environmental indicators were derived from the Organisation for Economic Co-operation and Development (OECD) Regional and Metropolitan Database. We used distributed lag non-linear and multivariate meta-regression models to estimate fractions of mortality attributable to heat and cold (AF%) in each city, and to evaluate the effect modification of each indicator across cities. RESULTS: Heat- and cold-related deaths amounted to 0.54% (95% confidence interval: 0.49 to 0.58%) and 6.05% (5.59 to 6.36%) of total deaths, respectively. Several city indicators modify the effect of heat, with a higher mortality impact associated with increases in population density, fine particles (PM2.5), gross domestic product (GDP) and Gini index (a measure of income inequality), whereas higher levels of green spaces were linked with a decreased effect of heat. CONCLUSIONS: This represents the largest study to date assessing the effect modification of temperature-mortality relationships. Evidence from this study can inform public-health interventions and urban planning under various climate-change and urban-development scenarios.


Assuntos
Ambiente Construído/estatística & dados numéricos , Temperatura Baixa/efeitos adversos , Temperatura Alta/efeitos adversos , Mortalidade/tendências , Temperatura Corporal , Cidades/epidemiologia , Meio Ambiente , Humanos , Plantas , Fatores de Risco , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...