Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32498089

RESUMO

CONTEXT: The gonads are the major source of sex steroids during reproductive ages. The gonadal function declines abruptly in women and gradually in men. The adrenals produce 11-oxygenated androgens (11-oxyandrogens), which start rising during adrenarche. Following menopause, 11-oxyandrogens levels remain similar to reproductive ages. OBJECTIVE: To compare the circulating 11-oxyandrogen concentrations in men and women across adult ages. METHODS: We used mass spectrometry to measure testosterone (T), androstenedione (A4), 11ß-hydroxytestosterone (11OHT), 11-ketotestosterone (11KT), 11ß-hydroxyandrostenedione (11OHA4), 11-ketoandrostenedione (11KA4), cortisol, and cortisone in morning sera obtained from adults in outpatient setting. We performed double immunofluorescence of 3ß-hydroxysteroid dehydrogenase type 2 and cytochrome b5 in adrenal tissue from 19 men, age 23-78 years. RESULTS: We included 590 patients (319 men), age 18-97 years, 84% white. 11KT and 11KA4 were stable across ages in women, but they declined in men (0.21 and 0.06 ng/dL/year, respectively, p<0.05). 11OHA4 and 11OHT increased modestly with age in women (0.6 and 0.09 ng/dL/year, respectively, p<0.01), and both remained stable across ages in men. As BMI increased, 11KA4 decreased in women, and 11KT increased in men, both suggesting higher 17ß-hydroxysteroid dehydrogenase activity in obese individuals. A4 and T declined with age and A4 with BMI in both sexes; T declined with BMI in men. Adrenal androgenic enzyme expressions in aging men were similar to those observed in women. CONCLUSIONS: In contrast with traditional androgens, the production of 11OHA4 and 11OHT is sustained with aging in both sexes. The bioactive androgen 11KT declines in aging men but not in women.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32516371

RESUMO

CONTEXT AND OBJECTIVE: Posture-responsive and -unresponsive aldosterone-producing adenomas (APAs) account for approximately 40% and 60% of APAs, respectively. Somatic gene mutations have been recently reported to exist in approximately 90% of APAs. This study was designed to characterize the biochemical, histopathologic, and genetic properties of these two types of APA. METHODS: Plasma levels of aldosterone and hybrid steroids (18-oxocortisol and 18-hydroxycortisol) were measured by LC-MS/MS. Immunohistochemistry (IHC) for CYP11B2 (aldosterone synthase) and CYP17A1 (17α-hydroxylase) and DNA sequencing (Sanger and next-generation sequencing) were performed on APA tissue collected from 23 posture-unresponsive and 17 posture-responsive APA patients. RESULTS: Patients with posture-unresponsive APA displayed higher (P < 0.01) levels of hybrid steroids, recumbent aldosterone and cortisol, larger (P < 0.01) zona fasciculata (ZF)-like tumors with higher (P < 0.01) expression of CYP17A1 (but not of CYP11B2) than patients with posture-responsive APA (most of which were not ZF-like). Of 40 studied APAs, 37 (92.5%) were found to harbour aldosterone-driving somatic mutations (KCNJ5 = 14, 35.0%; CACNA1D = 13, 32.5%; ATP1A1 = 8, 20.0%; and ATP2B3 = 2, 5.0%), including 5 previously unreported mutations (3 in CACNA1D and 2 in ATP1A1). Notably, 64.7% (11/17) of posture-responsive APAs carried CACNA1D mutations, whereas 56.5% (13/23) of posture-unresponsive APAs harboured KCNJ5 mutations. CONCLUSIONS: The elevated production of hybrid steroids by posture-unresponsive APAs may relate to their ZF-like tumor cell composition, resulting in expression of CYP17A1 (in addition to somatic gene mutation-driven CYP11B2 expression), thereby allowing production of cortisol which acts as the substrate for CYP11B2-generated hybrid steroids.

3.
Horm Metab Res ; 52(6): 427-434, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32227317

RESUMO

Primary aldosteronism (PA) is the most common cause of secondary hypertension. The hallmark of PA is adrenal production of aldosterone under suppressed renin conditions. PA subtypes include adrenal unilateral and bilateral hyperaldosteronism. Considerable progress has been made in defining the role for somatic gene mutations in aldosterone-producing adenomas (APA) as the primary cause of unilateral PA. This includes the use of next-generation sequencing (NGS) to define recurrent somatic mutations in APA that disrupt calcium signaling, increase aldosterone synthase (CYP11B2) expression, and aldosterone production. The use of CYP11B2 immunohistochemistry on adrenal glands from normal subjects, patients with unilateral and bilateral PA has allowed the identification of CYP11B2-positive cell foci, termed aldosterone-producing cell clusters (APCC). APCC lie beneath the adrenal capsule and like APA, many APCC harbor somatic gene mutations known to increase aldosterone production. These findings suggest that APCC may play a role in pathologic progression of PA. Herein, we provide an update on recent research directed at characterizing APCC and also discuss the unanswered questions related to the role of APCC in PA.

4.
Hypertension ; 75(4): 1034-1044, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32114847

RESUMO

Aldosterone-producing adenoma (APA) cause primary aldosteronism-the most frequent form of secondary hypertension. Somatic mutations in genes coding for ion channels and ATPases are found in APA and in aldosterone-producing cell clusters. We investigated the genetic, cellular, and molecular heterogeneity of different aldosterone-producing structures in adrenals with APA, to get insight into the mechanisms driving their development and to investigate their clinical and biochemical correlates. Genetic analysis of APA, aldosterone-producing cell clusters, and secondary nodules was performed in adrenal tissues from 49 patients by next-generation sequencing following CYP11B2 immunohistochemistry. Results were correlated with clinical and biochemical characteristics of patients, steroid profiles, and histological features of the tumor and adjacent adrenal cortex. Somatic mutations were identified in 93.75% of APAs. Adenoma carrying KCNJ5 mutations had more clear cells and cells expressing CYP11B1, and fewer cells expressing CYP11B2 or activated ß-catenin, compared with other mutational groups. 18-hydroxycortisol and 18-oxocortisol were higher in patients carrying KCNJ5 mutations and correlated with histological features of adenoma; however, mutational status could not be predicted using steroid profiling. Heterogeneous CYP11B2 expression in KCNJ5-mutated adenoma was not associated with genetic heterogeneity. Different mutations were identified in secondary nodules expressing aldosterone synthase and in independent aldosterone-producing cell clusters from adrenals with adenoma; known KCNJ5 mutations were identified in 5 aldosterone-producing cell clusters. Genetic heterogeneity in different aldosterone-producing structures in the same adrenal suggests complex mechanisms underlying APA development.

5.
Nat Rev Endocrinol ; 16(5): 284-296, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32203405

RESUMO

The adrenal gland is a source of sex steroid precursors, and its activity is particularly relevant during fetal development and adrenarche. Following puberty, the synthesis of androgens by the adrenal gland has been considered of little physiologic importance. Dehydroepiandrosterone (DHEA) and its sulfate, DHEAS, are the major adrenal androgen precursors, but they are biologically inactive. The second most abundant unconjugated androgen produced by the human adrenals is 11ß-hydroxyandrostenedione (11OHA4). 11-Ketotestosterone, a downstream metabolite of 11OHA4 (which is mostly produced in peripheral tissues), and its 5α-reduced product, 11-ketodihydrotestosterone, are bioactive androgens, with potencies equivalent to those of testosterone and dihydrotestosterone. These adrenal-derived androgens all share an oxygen atom on carbon 11, so we have collectively termed them 11-oxyandrogens. Over the past decade, these androgens have emerged as major components of several disorders of androgen excess, such as congenital adrenal hyperplasia, premature adrenarche and polycystic ovary syndrome, as well as in androgen-dependent tumours, such as castration-resistant prostate cancer. Moreover, in contrast to the more extensively studied, traditional androgens, circulating concentrations of 11-oxyandrogens do not demonstrate an age-dependent decline. This Review focuses on the rapidly expanding knowledge regarding the implications of 11-oxyandrogens in human physiology and disease.

6.
Horm Cancer ; 11(1): 52-62, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32002807

RESUMO

Primary aldosteronism (PA) is the most common cause of secondary hypertension with a high prevalence among patients with resistant hypertension. Despite the recent discovery of somatic variants in aldosterone-producing adenoma (APA)-associated PA, causes for PA due to bilateral aldosterone production (bilateral hyperaldosteronism; BHA) remain unknown. Herein, we identified rare gene variants in ATP2B4, in a cohort of patients with BHA. ATP2B4 belongs to the same family of Ca-ATPases as ATP2B3, which is involved in the pathogenesis of APA. Endogenous ATP2B4 expression was characterized in adrenal tissue, and the gene variants were functionally analyzed for effects on aldosterone synthase (CYP11B2) expression, steroid production in basal and agonist-stimulated conditions, and for changes in biophysical properties of channel properties. Knockdown of ATP2B4 in HAC15 exhibited reduced angiotensin II stimulation in one of four shRNA clones. Stable HAC15 cell lines with doxycycline (dox) - inducible wild-type and variant forms of ATP2B4 - were generated, and dox-induced upregulation of ATP2B4 mRNA and protein was confirmed. However, ATP2B4 variants did not alter basal or agonist-stimulated CYP11B2 expression. Whole-cell recordings in HAC15 cells indicated robust endogenous ATP2B4 conductance in native cells but reduced conductance with overexpressed WT and variant ATP2B4. The previously defined PA-causing ATP2B3 variant served as a positive control and exhibited elevated CYP11B2 mRNA. In conclusion, while this study did not confirm a pathogenic role for ATP2B4 variants in BHA, we describe the sequencing analysis for familial and sporadic BHA and outline a template for the thorough in vitro characterization of gene variants.

7.
Hypertension ; 75(3): 645-649, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31983310

RESUMO

Driver somatic mutations for aldosterone excess have been found in ≈90% of aldosterone-producing adenomas (APAs) using an aldosterone synthase (CYP11B2)-guided sequencing approach. In the present study, we identified a novel somatic CACNA1H mutation (c.T4289C, p.I1430T) in an APA without any currently known aldosterone-driver mutations using CYP11B2 immunohistochemistry-guided whole exome sequencing. The CACNA1H gene encodes a voltage-dependent T-type calcium channel alpha-1H subunit. Germline variants in this gene are known as a cause of familial hyperaldosteronism IV. Targeted next-generation sequencing detected identical CACNA1H variants in 2 additional APAs in a cohort of the University of Michigan, resulting in a prevalence of 4% (3/75) in APAs. We tested the functional effect of the variant on adrenal cell aldosterone production and CYP11B2 mRNA expression using the human adrenocortical HAC15 cell line with a doxycycline-inducible CACNA1HI1430T mutation. Doxycycline treatment increased CYP11B2 mRNA levels as well as aldosterone production, supporting a pathological role of the CACNA1H p.I1430T mutation on the development of primary aldosteronism. In conclusion, somatic CACNA1H mutation is a genetic cause of APAs. Although the prevalence of this mutation is low, this study will provide better understanding of molecular mechanism of inappropriate aldosterone production in APAs.

8.
J Clin Invest ; 130(1): 83-93, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31738186

RESUMO

The mineralocorticoid aldosterone is produced in the adrenal zona glomerulosa (ZG) under the control of the renin-angiotensin II (AngII) system. Primary aldosteronism (PA) results from renin-independent production of aldosterone and is a common cause of hypertension. PA is caused by dysregulated localization of the enzyme aldosterone synthase (Cyp11b2), which is normally restricted to the ZG. Cyp11b2 transcription and aldosterone production are predominantly regulated by AngII activation of the Gq signaling pathway. Here, we report the generation of transgenic mice with Gq-coupled designer receptors exclusively activated by designer drugs (DREADDs) specifically in the adrenal cortex. We show that adrenal-wide ligand activation of Gq DREADD receptors triggered disorganization of adrenal functional zonation, with induction of Cyp11b2 in glucocorticoid-producing zona fasciculata cells. This result was consistent with increased renin-independent aldosterone production and hypertension. All parameters were reversible following termination of DREADD-mediated Gq signaling. These findings demonstrate that Gq signaling is sufficient for adrenocortical aldosterone production and implicate this pathway in the determination of zone-specific steroid production within the adrenal cortex. This transgenic mouse also provides an inducible and reversible model of hyperaldosteronism to investigate PA therapeutics and the mechanisms leading to the damaging effects of aldosterone on the cardiovascular system.

9.
J Clin Endocrinol Metab ; 105(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31789380

RESUMO

CONTEXT: Aldosterone-producing adrenocortical adenomas (APAs) are mainly composed of clear (lipid rich) and compact (eosinophilic) tumor cells. The detailed association between these histological features and somatic mutations (KCNJ5, ATP1A1, ATP2B3, and CACNA1D) in APAs is unknown. OBJECTIVE: To examine the association between histological features and individual genotypes in APAs. METHODS: Examination of 39 APAs subjected to targeted next-generation sequencing (11 KCNJ5, 10 ATP1A1, 10 ATP2B3, and 8 CACNA1D) and quantitative morphological and immunohistochemical (CYP11B2 and CYP17A1) analyses using digital imaging software. RESULTS: KCNJ5- and ATP2B3-mutated APAs had clear cell dominant features (KCNJ5: clear 59.8% [54.4-64.6%] vs compact 40.2% (35.4-45.6%), P = .0022; ATP2B3: clear 54.3% [48.2-62.4 %] vs compact 45.7% (37.6-51.8 %), P = .0696). ATP1A1- and CACNA1D-mutated APAs presented with marked intratumoral heterogeneity. A significantly positive correlation of immunoreactivity was detected between CYP11B2 and CYP17A1 in tumor cells of KCNJ5-mutated APAs (P = .0112; ρ = 0.7237), in contrast, significantly inverse correlation was detected in ATP1A1-mutated APAs (P = .0025; ρ = -0.8667). CONCLUSION: KCNJ5-mutated APAs, coexpressing CYP11B2 and CYP17A1, were more deviated in terms of zonation-specific differentiation of adrenocortical cells than ATP1A1- and ATP2B3-mutated APAs.

10.
Hypertension ; 75(1): 183-192, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786984

RESUMO

Adrenal vein sampling (AVS) is required to distinguish unilateral from bilateral aldosterone sources in primary aldosteronism (PA), and cortisol is used for AVS data interpretation, but cortisol has several pitfalls. In this study, we present the utility of several other steroids in PA subtyping, both during AVS, as well as in peripheral serum. We included patients with PA who underwent AVS at University of Michigan between 2012 and 2018. We used mass spectrometry to simultaneously quantify 17 steroids in adrenal veins (AV) and periphery, both at baseline and after cosyntropin administration. PA was classified as unilateral or bilateral based on a lateralization index ≥ or <4, respectively, separately for baseline and post-cosyntropin administration. Of 131 participants, AV catheterizations was deemed failed in 28 (21 %) patients (36 AVs) at baseline. Eight steroids demonstrated higher AV/periphery ratios than cortisol (P<0.01 for all); 11ß-hydroxyandrostenedione, 11-deoxycortisol, and corticosterone rescued most failed baseline catheterizations. Lateralization was generally consistent when using these alternative steroids. Based on pre- and post-cosyntropin data, the remaining 103 patients were classified as: U/U, 37; B/B, 32; U/B, 20; B/U, 14. Discriminant analysis of multi-steroid panels from peripheral serum showed distinct profiles across the 4 groups, with highest aldosterone, 18-oxocortisol and 11-deoxycorticosterone in U/U patients. In conclusion, 11ß-hydroxyandrostenedione and 11-deoxycortisol are superior to cortisol for AVS data interpretation. Single assay multi-steroid panels measured in peripheral serum are helpful in stratified PA subtyping and have the potential to circumvent AVS in a subset of patients with PA.

11.
J Clin Endocrinol Metab ; 104(12): 5867-5876, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31408156

RESUMO

CONTEXT: Cosyntropin [ACTH (1-24)] stimulation during adrenal vein (AV) sampling (AVS) enhances the confidence in the success of AV cannulation and circumvents intraprocedure hormonal fluctuations. Cosyntropin's effect on primary aldosteronism (PA) lateralization, however, is controversial. OBJECTIVES: To define the major patterns of time-dependent lateralization, and their determinants, after cosyntropin stimulation during AVS. METHODS: We retrospectively studied patients with PA who underwent AVS before, 10, and 20 minutes after cosyntropin stimulation between 2009 and 2018. Unilateral (U) or bilateral (B) PA was determined on the basis of a lateralization index (LI) value ≥4 or <4, respectively. Available adrenal tissue underwent aldosterone synthase-guided next-generation sequencing. RESULTS: PA lateralization was concordant between basal and cosyntropin-stimulated AVS in 169 of 222 patients (76%; U/U, n = 110; B/B, n = 59) and discordant in 53 patients (24%; U/B, n = 32; B/U, n = 21). Peripheral and dominant AV aldosterone concentrations and LI were highest in U/U patients and progressively lower across intermediate and B/B groups. LI response to cosyntropin increased in 27% of patients, decreased in 33%, and remained stable in 40%. Baseline aldosterone concentrations predicted the LI pattern across time (P < 0.001). Mutation status was defined in 61 patients. Most patients with KCNJ5 mutations had descending LI, whereas those with ATP1A1 and ATP2B3 mutations had ascending LI after cosyntropin stimulation. CONCLUSION: Patients with severe PA lateralized robustly regardless of cosyntropin use. Cosyntropin stimulation reveals intermediate PA subtypes; its impact on LI varies with baseline aldosterone concentrations and aldosterone-driver mutations.

13.
J Steroid Biochem Mol Biol ; 190: 242-249, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959151

RESUMO

The androgen precursors, dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) are produced in high amounts by the adrenal cortex primarily in humans and a few other primates. The human adrenal also secretes 11-oxygenated androgens (11-oxyandrogens), including 11ß-hydroxyandrostenedione (11OHA4), 11-ketoandrostenedione (11KA4), 11ß-hydroxytestosterone (11OHT) and 11-ketotestosterone (11KT), of which 11OHT and 11KT are bioactive androgens. The 11-oxyandrogens, particularly 11KT, have been recognized as biologically important testicular androgens in teleost fishes for decades, but their physiological contribution in humans has only recently been established. Beyond fish and humans, however, the presence of 11-oxyandrogens in other species has not been investigated. This study provides a comprehensive analysis of a set of C19 steroids, including the traditional androgens and 11-oxyandrogens, across 18 animal species. As previously shown, serum DHEA and DHEAS were much higher in primates than all other species. Circulating 11-oxyandrogens, especially 11KT, were observed in notable amounts in male, but not in female trout, consistent with gonadal origin in fish. The circulating concentrations of 11-oxyandrogens ranged from 0.1 to 10 nM in pigs, guinea pigs and in all the primates studied (rhesus macaque, baboon, chimpanzee and human) but not in rats or mice, and 11OHA4 was consistently the most abundant. In contrast to fish, serum 11KT concentrations were similar in male and female primates for each species, despite significantly higher circulating testosterone in males, suggesting that 11KT production in these species is not testis-dependent and primarily originates from adrenal-derived 11-oxyandrogen precursors.


Assuntos
Androgênios/sangue , Sulfato de Desidroepiandrosterona/sangue , Desidroepiandrosterona/sangue , Testosterona/análogos & derivados , Animais , Feminino , Masculino , Especificidade da Espécie , Testosterona/sangue
14.
Clin Cancer Res ; 25(11): 3276-3288, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30770352

RESUMO

PURPOSE: Adrenocortical carcinoma (ACC) is a rare, aggressive malignancy with few therapies; however, patients with locoregional disease have variable outcomes. The Cancer Genome Atlas project on ACC (ACC-TCGA) identified that cancers of patients with homogeneously rapidly recurrent or fatal disease bear a unique CpG island hypermethylation phenotype, "CIMP-high." We sought to identify a biomarker that faithfully captures this subgroup.Experimental Design: We analyzed ACC-TCGA data to characterize differentially regulated biological processes, and identify a biomarker that is methylated and silenced exclusively in CIMP-high ACC. In an independent cohort of 114 adrenocortical tumors (80 treatment-naive primary ACC, 22 adrenocortical adenomas, and 12 non-naive/nonprimary ACC), we evaluated biomarker methylation by a restriction digest/qPCR-based approach, validated by targeted bisulfite sequencing. We evaluated expression of this biomarker and additional prognostic markers by qPCR. RESULTS: We show that CIMP-high ACC is characterized by upregulation of cell cycle and DNA damage response programs, and identify that hypermethylation and silencing of G0S2 distinguishes this subgroup. We confirmed G0S2 hypermethylation and silencing is exclusive to 40% of ACC, and independently predicts shorter disease-free and overall survival (median 14 and 17 months, respectively). Finally, G0S2 methylation combined with validated molecular markers (BUB1B-PINK1) stratifies ACC into three groups, with uniformly favorable, intermediate, and uniformly dismal outcomes. CONCLUSIONS: G0S2 hypermethylation is a hallmark of rapidly recurrent or fatal ACC, amenable to targeted assessment using routine molecular diagnostics. Assessing G0S2 methylation is straightforward, feasible for clinical decision-making, and will enable the direction of efficacious adjuvant therapies for patients with aggressive ACC.

15.
Hypertension ; 73(4): 885-892, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30739536

RESUMO

Somatic mutations have been identified in aldosterone-producing adenomas (APAs) in genes that include KCNJ5, ATP1A1, ATP2B3, and CACNA1D. Based on independent studies, there appears to be racial differences in the prevalence of somatic KCNJ5 mutations, particularly between East Asians and Europeans. Despite the high cardiovascular disease mortality of blacks, there have been no studies focusing on somatic mutations in APAs in this population. In the present study, we investigated genetic characteristics of APAs in blacks using a CYP11B2 (aldosterone synthase) immunohistochemistry-guided next-generation sequencing approach. The adrenal glands with adrenocortical adenomas from 79 black patients with primary aldosteronism were studied. Seventy-three tumors from 69 adrenal glands were confirmed to be APAs by CYP11B2 immunohistochemistry. Sixty-five of 73 APAs (89%) had somatic mutations in aldosterone-driver genes. Somatic CACNA1D mutations were the most prevalent genetic alteration (42%), followed by KCNJ5 (34%), ATP1A1 (8%), and ATP2B3 mutations (4%). CACNA1D mutations were more often observed in APAs from males than those from females (55% versus 29%, P=0.033), whereas KCNJ5 mutations were more prevalent in APAs from females compared with those from males (57% versus 13%, P<0.001). No somatic mutations in aldosterone-driver genes were identified in tumors without CYP11B2 expression. In conclusion, 89% of APAs in blacks harbor aldosterone-driving mutations, and unlike Europeans and East Asians, the most frequently mutated aldosterone-driver gene was CACNA1D. Determination of racial differences in the prevalence of aldosterone-driver gene mutations may facilitate the development of personalized medicines for patients with primary aldosteronism.


Assuntos
Neoplasias do Córtex Suprarrenal/genética , Adenoma Adrenocortical/genética , Afro-Americanos , Aldosterona/genética , Predisposição Genética para Doença , Mutação , Neoplasias do Córtex Suprarrenal/etnologia , Neoplasias do Córtex Suprarrenal/metabolismo , Glândulas Suprarrenais/patologia , Adenoma Adrenocortical/etnologia , Adenoma Adrenocortical/metabolismo , Aldosterona/metabolismo , Análise Mutacional de DNA , DNA de Neoplasias/genética , Humanos , Incidência , Estados Unidos/epidemiologia
16.
Endocr Relat Cancer ; 26(4): 463-470, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753137

RESUMO

Somatic variants in genes that regulate intracellular ion homeostasis have been identified in aldosterone-producing adenomas (APA). Although the mechanisms leading to an increased aldosterone production in APA cells has been well studied, the molecular events that cause cell proliferation and tumor formation are poorly understood. In the present study, we have performed whole exome sequencing (WES) to characterize the landscape of somatic alterations in a homogeneous series of APA with pathogenic KCNJ5 variants. In the WES analysis on eleven APA, 84 exonic somatic events were called by 3 different somatic callers. Besides the KCNJ5 gene, only two genes (MED13 and ZNF669) harbored somatic variants in more than one APA. Unlike adrenocortical carcinomas, no chromosomal instability was observed by the somatic copy-number alteration and loss of heterozygosity analyses. The estimated tumor purity ranged from 0.35 to 0.67, suggesting a significant proportion of normal cell infiltration. Based on the results of PureCN analysis, the KCNJ5 variants appear to be clonal. In conclusion, in addition to KCNJ5 somatic pathogenic variant, no significant somatic event that would obviously explain proliferation or tumor growth was observed in our homogeneous cohort of KCNJ5-mutated APA. The molecular mechanisms causing APA growth and tumorigenesis remain to be elucidated.


Assuntos
Neoplasias do Córtex Suprarrenal/genética , Adenoma Adrenocortical/genética , Aldosterona/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação
17.
J Clin Endocrinol Metab ; 104(7): 2615-2622, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753518

RESUMO

CONTEXT: The ovaries and adrenals are sources of androgens in women. Although dehydroepiandrosterone (DHEA), DHEA sulfate (DHEAS), and testosterone (T) all decline with age, these C19 steroids correlate poorly with parameters of androgen action in postmenopausal women. OBJECTIVE: To comprehensively compare the androgen profiles of pre- and postmenopausal women. METHODS: We quantified 19 steroids-including DHEA; DHEAS; T; androstenedione (A4); and the following adrenal-specific 11-oxygenated C19 steroids (11oxyandrogens): 11ß-hydroxytestosterone (11OHT), 11-ketotestosterone (11KT), 11ß-hydroxyandrostenedione (11OHA4), and 11-ketoandrostenedione (11KA4)-using liquid chromatography-tandem mass spectrometry in morning serum obtained from 100 premenopausal (age 20 to 40 years) and 100 postmenopausal (age ≥ 60 years) women. Double immunofluorescence of 3ß-hydroxysteroid dehydrogenase type 2 (HSD3B2) with cytochrome b5 (CYB5A) or sulfotransferase 2A1 (SULT2A1) was performed in normal adrenal glands obtained from eight premenopausal and eight postmenopausal women. RESULTS: DHEA, DHEAS, A4, and T were significantly higher in pre- than in postmenopausal women (2.9, 2.8, 2.9, and 1.6-fold, respectively; P < 0.0001). In contrast, the 11-oxyandrogens did not decrease with aging, and the 11OHT/T and 11OHA4/A4 ratios showed strong positive correlations with age (r = 0.5 and 0.8, respectively; P < 0.0001). Double immunofluorescence analysis showed that with the involution of the zona reticularis in the old adrenals, the sharp zonal segregation of HSD3B2 and CYB5A becomes less distinct, and areas of HSD3B2 and CYB5A overlap are observed. CONCLUSIONS: Unlike DHEA, DHEAS, A4, and T, the 11oxyandrogens do not decline in aging women. Structural changes within the adrenal cortex might explain the evolution of androgen profiles in aging women.

18.
J Steroid Biochem Mol Biol ; 190: 273-280, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30707926

RESUMO

Adrenal steroidogenesis is a robust process, involving a series of enzymatic reactions that facilitate conversion of cholesterol into biologically active steroid hormones under the stimulation of angiotensin II, adrenocorticotropic hormone and other regulators. The biosynthesis of mineralocorticoids, glucocorticoids, and adrenal-derived androgens occur in separate adrenocortical zones as a result of the segregated expression of steroidogenic enzymes and cofactors. This mini review provides the principles of adrenal steroidogenesis, including the classic and under-appreciated 11-oxygenated androgen pathways. Several adrenal diseases result from dysregulated adrenal steroid synthesis. Herein, we review growing evidence that adrenal diseases exhibit characteristic modifications from normal adrenal steroid pathways that provide opportunities for the discovery of biomarker steroids that would improve diagnosis and monitoring of adrenal disorders.


Assuntos
Doenças das Glândulas Suprarrenais/metabolismo , Esteroides/metabolismo , Doenças das Glândulas Suprarrenais/sangue , Doenças das Glândulas Suprarrenais/diagnóstico , Doenças das Glândulas Suprarrenais/urina , Glândulas Suprarrenais/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Vias Biossintéticas , Humanos , Esteroides/sangue , Esteroides/urina
19.
J Clin Endocrinol Metab ; 104(2): 487-492, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239792

RESUMO

Context: Many antihypertensive medications modulate the renin-angiotensin-aldosterone system, possibly skewing the diagnosis and subtyping of primary aldosteronism (PA). Particularly, mineralocorticoid receptor antagonists (MRA) might raise renin and stimulate aldosterone synthesis from nonautonomous areas, potentially obscuring lateralization on adrenal vein sampling (AVS). Withdrawal of MRA in severe PA, however, can precipitate hypokalemia and/or hypertension and therefore is not always practical. Objective: To assess the effects of MRA on the interpretation of AVS data. Design and Participants: A cohort study of all PA patients who underwent AVS at University of Michigan between January 2009 and January 2018 was conducted. Demographics, diagnostic, AVS, surgical pathology, and follow-up data were collected retrospectively. Results: Of 191 patients who underwent AVS, 51 (27%) were exposed to MRA at the time of the procedure. Plasma aldosterone concentration and the daily defined dose of antihypertensives were higher in patients taking vs those not taking MRA. Unilateral PA was more frequent in the MRA group, both precosyntropin and postcosyntropin (P < 0.05). The MRA group included two patients with unsuppressed renin, who demonstrated unequivocal AVS lateralization. To date, 86 patients underwent unilateral adrenalectomy, including 30 patients taking MRA during AVS. The proportion of clinical and biochemical success was not statistically different between patients exposed to and those not exposed to MRA during AVS (P = 0.17 and 0.65, respectively). Conclusion: Our data suggest that conclusive AVS lateralization is often achieved in patients with severe PA despite MRA use.


Assuntos
Glândulas Suprarrenais/irrigação sanguínea , Coleta de Amostras Sanguíneas/métodos , Hiperaldosteronismo/diagnóstico , Antagonistas de Receptores de Mineralocorticoides/administração & dosagem , Sistema Renina-Angiotensina/efeitos dos fármacos , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/metabolismo , Adulto , Idoso , Aldosterona/sangue , Aldosterona/metabolismo , Coleta de Amostras Sanguíneas/normas , Reações Falso-Negativas , Feminino , Humanos , Hiperaldosteronismo/sangue , Hiperaldosteronismo/complicações , Hipertensão/sangue , Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Masculino , Pessoa de Meia-Idade , Guias de Prática Clínica como Assunto , Renina/sangue , Renina/metabolismo , Estudos Retrospectivos , Veias
20.
Endocr Relat Cancer ; 26(2): 217-225, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30475217

RESUMO

Several somatic mutations specific to aldosterone-producing adenomas (APAs) have been described. A small proportion of adrenocortical carcinomas (ACCs) are associated with hyperaldosteronism, either primary aldosteronism or hyperreninemic hyperaldosteronism. However, it is unknown whether they harbor mutations of the same spectrum as APAs. The objective of this study is to describe the clinical phenotype and molecular genotype of ACCs with hyperaldosteronism, particularly the analysis for common APA-associated genetic changes. Patients were identified by retrospective chart review at a specialized referral center and by positive staining for CYP11B2 of tissue microarrays. Twenty-five patients with ACC and hyperaldosteronism were initially identified by retrospective chart review, and tissue for further analysis was available on 13 tumors. Seven patients were identified by positive staining for CYP11B2 in a tissue microarray, of which two were already identified in the initial chart review. Therefore, a total number of 18 patients with a diagnosis of ACC and features of either primary aldosteronism or hyperreninemic hyperaldosteronism were therefore included in the final study. Mutational status for a select list of oncogenes, tumor suppressor genes and genes known to carry mutations in APAs were analyzed by next-generation sequencing. Review of clinical data suggested autonomous aldosterone production in the majority of cases, while for some cases, hyperreninemic hyperaldosteronism was the more likely mechanism. The mutational landscape of ACCs associated with hyperaldosteronism was not different from ACCs with a different hormonal phenotype. None of the ACCs harbored mutations of known APA-associated genes, suggesting an alternative mechanism conferring aldosterone production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA