Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Sci Total Environ ; 713: 136707, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32019041


Gut microbes play an essential role in the development and functioning of the human immune system. A disturbed gut microbiota composition is often associated with a number of health disorders including immune-mediated diseases. Differences in host characteristics such as ethnicity, living habit and diet have been used to explain differences in the gut microbiota composition in inter-continental comparison studies. As our previous studies imply that daily skin contact with organic gardening materials modify gut microflora, here we investigated the association between living environment and gut microbiota in a homogenous western population along an urban-rural gradient. We obtained stool samples from 48 native elderly Finns in province Häme in August and November 2015 and identified the bacterial phylotypes using 16S rRNA Illumina MiSeq sequencing. We assumed that yard vegetation and land cover classes surrounding homes explain the stool bacterial community in generalized linear mixed models. Diverse yard vegetation was associated with a reduced abundance of Clostridium sensu stricto and an increased abundance of Faecalibacterium and Prevotellaceae. The abundance of Bacteroides was positively and strongly associated with the built environment. Exclusion of animal owners did not alter the main associations. These results suggest that diverse vegetation around homes is associated with health-related changes in gut microbiota composition. Manipulation of the garden diversity, possibly jointly with urban planning, is a promising candidate for future intervention studies that aim to maintain gut homeostasis.

Microbioma Gastrointestinal , Animais , Bactérias , Bacteroides , Fezes , Humanos , RNA Ribossômico 16S
Environ Int ; 132: 105069, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31400602


An agricultural environment and exposure to diverse environmental microbiota has been suggested to confer protection against immune-mediated disorders. As an agricultural environment may have a protective role, it is crucial to determine whether the limiting factors in the transfer of environmental microbiota indoors are the same in the agricultural and urban environments. We explored how sampling month, garden diversity and animal ownership affected the indoor-transfer of environmental microbial community. We collected litter from standardized doormats used for 2 weeks in June and August 2015 and February 2016 and identified bacterial phylotypes using 16S rRNA Illumina MiSeq sequencing. In February, the diversity and richness of the whole bacterial community and the relative abundance of environment-associated taxa were reduced, whereas human-associated taxa and genera containing opportunistic pathogens were enriched in the doormats. In summer, the relative abundances of several taxa associated previously with beneficial health effects were higher, particularly in agricultural areas. Surprisingly, the importance of vegetation on doormat microbiota was more observable in February, which may have resulted from snow cover that prevented contact with microbes in soil. Animal ownership increased the prevalence of genera Bacteroides and Acinetobacter in rural doormats. These findings underline the roles of season, living environment and lifestyle in the temporal variations in the environmental microbial community carried indoors. As reduced contact with diverse microbiota is a potential reason for immune system dysfunction, the results may have important implications in the etiology of immune-mediated, non-communicable diseases.

Bactérias/isolamento & purificação , Habitação/estatística & dados numéricos , Microbiota , Microbiologia do Solo , Idoso , Agricultura , Animais , Bactérias/genética , Gatos , Bovinos , Cidades , Cães , Jardins , Humanos , Plantas , RNA Ribossômico 16S/genética , Estações do Ano , Solo
Artigo em Inglês | MEDLINE | ID: mdl-31426345


Nature contacts are recognized as positively contributing to humans' health and well-being. Although there have been projects to green daycare or schoolyards, yard greening and microbial biodiversity have never been studied simultaneously. We asked whether simultaneously increasing biodiversity exposure and greening urban daycare yards affects 3-5 years-old children's physical activity and play, their environmental relationships, and their perceived well-being. For transforming six daycare yards in Finland, we used a forest floor with high biodiversity, sod, peat blocks, and planters for vegetable and flower growing. We used qualitative interview and survey-based data collected from the daycare personnel and parents to analyze how green yards encourage children's engagement with their everyday life-worlds. We identified the functional possibilities provided by the yards and the dynamic aspects related to the greening. Green, biodiverse yards were considered safe, and inspired children's play, diversified their activities, and increased physical activity. The greenery offered embodied experiences of nature and provided the children with multi-sensory exploration and diverse learning situations. The dynamic and emotional ways of engaging with the natural environment increased their well-being. The activities related to caring for the yards and exploring them promoted the development of environmental relationships. The results can be used for designing health-enhancing yards.

Comportamento Infantil , Creches , Meio Ambiente , Natureza , Jogos e Brinquedos , Adulto , Biodiversidade , Pré-Escolar , Exercício Físico , Feminino , Finlândia , Humanos , Masculino , Plantas , Inquéritos e Questionários
Front Microbiol ; 9: 84, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467728


Expanding urbanization is a major factor behind rapidly declining biodiversity. It has been proposed that in urbanized societies, the rarity of contact with diverse environmental microbiota negatively impacts immune function and ultimately increases the risk for allergies and other immune-mediated disorders. Surprisingly, the basic assumption that urbanization reduces exposure to environmental microbiota and its transfer indoors has rarely been examined. We investigated if the land use type around Finnish homes affects the diversity, richness, and abundance of bacterial communities indoors. Debris deposited on standardized doormats was collected in 30 rural and 26 urban households in and near the city of Lahti, Finland, in August 2015. Debris was weighed, bacterial community composition determined by high throughput sequencing of bacterial 16S ribosomal RNA (rRNA) gene on the Illumina MiSeq platform, and the percentage of four different land use types (i.e., built area, forest, transitional, and open area) within 200 m and 2000 m radiuses from each household was characterized. The quantity of doormat debris was inversely correlated with coverage of built area. The diversity of total bacterial, Proteobacterial, Actinobacterial, Bacteroidetes, and Firmicutes communities decreased as the percentage of built area increased. Their richness followed the same pattern except for Firmicutes for which no association was observed. The relative abundance of Proteobacteria and particularly Gammaproteobacteria increased, whereas that of Actinobacteria decreased with increasing built area. Neither Phylum Firmicutes nor Bacteroidetes varied with coverage of built area. Additionally, the relative abundance of potentially pathogenic bacterial families and genera increased as the percentage of built area increased. Interestingly, having domestic animals (including pets) only altered the association between the richness of Gammaproteobacteria and diversity of Firmicutes with the built area coverage suggesting that animal ownership minimally affects transfer of environmental microbiota indoors from the living environment. These results support the hypothesis that people living in densely built areas are less exposed to diverse environmental microbiota than people living in more sparsely built areas.