Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32186313

RESUMO

A hexacoordinated complex [Co(pydm)2](mdnbz)2 from the family of pincer complexes was prepared and structurally characterized. The complex behaves as an S = 3/2 spin system with a considerable zero-field splitting parameter D/hc ∼ +50 cm-1. The AC susceptibility measurements show a slow magnetic relaxation with three relaxation channels: at the low-frequency (LF), intermediate-frequency (IF) and high-frequency (HF) domains. At T = 2.0 K and an external field BDC = 0.25 T, the relaxation times of the individual modes are τ(LF) = 282 ms, τ(IF) = 3.1 ms, and τ(HF) = 0.16 ms, and the mole fractions of the slowly relaxing species are x(LF) = 0.19, x(IF) = 0.45, and x(HF) = 0.37. A comparison with the analogous complex [Co(pydm)2](dnbz)2 possessing a demethylated counter anion and identical metal cation shows that even small modifications in the composition of SIMs are no longer underestimated for the slow magnetic relaxation.

2.
Chem Commun (Camb) ; 55(92): 13868-13871, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31674626

RESUMO

A mononuclear pentacoordinate iron(iii) complex shows slow magnetic relaxation with three relaxation channels. The high-frequency relaxation time of the order of microseconds is prolonged on cooling in accordance with the direct and Raman processes. The low frequency relaxation time is little dependent on temperature and varies in the range τ(LF) = 0.52-0.79 s.

3.
Dalton Trans ; 48(31): 11647-11650, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31318366

RESUMO

A hexacoordinate mononuclear [Ni(pydm)2](dnbz)2 complex shows field-induced slow magnetic relaxation with two or three relaxation channels that are strongly supported by an external magnetic field. At BDC = 0.8 T and T = 1.9 K, the low-frequency (LF) relaxation time is as slow as τ(LF) = 1.3 s with the mole fraction of x(LF) = 0.47.

4.
Dalton Trans ; 48(30): 11278-11284, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31268102

RESUMO

The novel organic-inorganic hybrid salt [L]2[CoCl4] (1) and molecular complex [CoLCl3] (2), where L+ is 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium cation, feature simple {CoCl4} and {CoCl3N} tetrahedral environments of negligible (1) and a slightly higher distortion (2) that are responsible for rather low positive magnetic anisotropy of CoII ion with D/hc = 12.1(6) (1) and 19.4(15) cm-1 (2). Both compounds exhibit field-induced slow magnetic relaxation with three relaxation channels [low- (LF), intermediate- and high-frequency (HF) modes] that is frequency and field dependent. With the increased DC field, the peaks referring to the LF relaxation path are moved to lower frequencies so that the applied DC field causes prolongation of the relaxation time. The opposite is true for the HF relaxation branch: the peak is moved to higher frequencies. Considering the simplicity of the coordination environment and moderate magnetic anisotropy of the metal ion in 1 and 2, the compounds are unique with respect to the remarkably long relaxation time for a given applied DC field and temperature: τLF = 0.54(4) s at BDC = 1.0 T and T = 2.0 K for 1, and τLF = 1.8(2) s at BDC = 1.2 T and T = 1.9 K for 2.

5.
Inorg Chem ; 57(22): 14314-14321, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30406658

RESUMO

Instead of assembling complex clusters and/or expensive lanthanide-based systems as single ion magnets, we are focusing on mononuclear cobalt(II) systems among which the complex under study, [Co( pydca)( dmpy)]2·H2O (1), shows a field supported slow magnetic relaxation on the order of seconds at low temperature ( pydca = pyridine-2,6-dicarboxylato, dmpy = 2,6-dimethanolpyridine). The low-frequency relaxation time is as slow as τ(LF) = 1.35(6) s at T = 1.9 K and BDC = 0.4 T. The properties of 1 are compared to the previously reported nickel and copper analogues which were the first examples of single ion magnets in the family of Ni(II) and Cu(II) complexes.

6.
Dalton Trans ; 47(44): 15745-15750, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30346456

RESUMO

A [Co(N3)2(mqu)] complex with a 1D chain architecture (mqu - 4-methylquinoline) displays the paramagnetic behaviour with a slight exchange interaction of antiferromagnetic nature among Co(ii) centres. It shows slow magnetic relaxation with three distinct modes. The relaxation time strongly depends upon the applied external field. The slowest relaxation time refers to the low-frequency mode τLF = 1.6(2) s at BDC = 0.8 T and T = 1.9 K.

7.
Inorg Chem ; 57(20): 12740-12755, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30277381

RESUMO

Three pentacoordinate complexes of the type [Co( pypz)X2], where pypz is a tridentate ligand 2,6-bis(pyrazol-1-yl)pyridine and X = Cl- (1), NCS- (2), and NCO- (3), have been synthesized, and their structures have been determined by X-ray analysis. The DC magnetic data show a sizable magnetic anisotropy, which was confirmed by high-field high-frequency electron paramagnetic resonance (HF EPR) measurements. Well-resolved HF EPR spectra of high spin cobalt (II) were observed over the microwave frequency range 100-650 GHz. The experimental spectra of both complexes were simulated with axial g tensor components, a very large positive D value, and different E/ D ratios. To determine the exact D value for 2 (38.4 cm-1) and 3 (40.92 cm-1), the far-infrared magnetic spectroscopy method was used. Knowledge of the zero field splitting parameters and their signs is crucial in interpreting the single-molecule magnet or single chain magnet behavior. The AC susceptibility data confirm that these complexes exhibit a slow magnetic relaxation under small applied DC field with two (1 and 3) or three (2) relaxation modes.

8.
Dalton Trans ; 47(43): 15523-15529, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30338326

RESUMO

Cobalt(ii) benzoate trihydrate prepared by the reaction of CoCO3 with benzoic acid (HBz) in boiling water followed by crystallization has been structurally characterized as a chain-like system with the formula unit [Co(Bz)(H2O)2]Bz·H2O where the Co(ii) atoms are triply linked by one bridging syn-syn benzoato (Bz) and two aqua ligands; additional benzoate counter ions and solvate water molecules are present in the crystal structure. DC magnetic measurements reveal a sizable exchange coupling of a ferromagnetic nature between the Co(ii) atoms. At TN = 5.5 K the paramagnetic phase switches to the antiferromagnetic phase. Though the remnant magnetization is zero, the magnetization curve shows two lobes of a hysteresis loop and the DC relaxation experiments confirm a long relaxation time at T = 2.0 K. AC susceptibility data confirm a slow relaxation of magnetization even in the antiferromagnetic phase. In the absence of the magnetic field, two relaxation channels exist. The relaxation time for the low frequency channel is as slow as τLF > 1.6 s and data fitting yields τLF (2.1 K) = 14 s. The high-frequency relaxation time obeys the Orbach process at a higher temperature whereas the Raman process dominates the low-temperature region. Three slow relaxation channels are evidenced at the applied magnetic field BDC = 0.1 T.

9.
Dalton Trans ; 47(24): 7879-7882, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29850759

RESUMO

A mononuclear Ni(ii) complex, [Ni(pydca)(dmpy)]·H2O, pyridine-2,6-dicarboxylato-2,6-dimethanolpyridine nickel(ii) monohydrate, exhibits a slow magnetic relaxation under an applied magnetic field with two and/or three relaxation channels. While at BDC = 0.2 T, the low-frequency relaxation mode is weakly developed, its intensity grows rapidly with the field so that at BDC = 0.6 T, this is the dominating relaxation path giving rise to a relaxation time of τLF = 322 ms at T = 2.0 K. At BDC = 1.2 T the relaxation time is as slow as τLF = 876 ms.

10.
Inorg Chem ; 57(8): 4352-4358, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29600851

RESUMO

Three compounds with octahedral-tetrahedral Co(II) moieties of [Co( dppm O, O)3][CoX4] type, where X = SCN (1), Cl (2), or I (4) have been synthesized and characterized by the X-ray structure analysis (1 and 4), and spectroscopic methods. The dc magnetic measurements show high magnetic anisotropy for octahedral centers whereas tetrahedral sites possess moderate D values. These results are confirmed by the ab initio calculations. The ac susceptibility data reveals a slow magnetic relaxation for 2 and 4, similar to that of the X = Br analogue (3), whereas 1 displays no ac-absorption signal. There are two relaxation channels; the slower for 2 (4) possesses a relaxation time as long as τLF= 178 (588) ms at T = 1.9 K and Bdc = 0.7 T. Also, the half-Zn analogue, [Co( dppm O, O)3][ZnI4], shows slow magnetic relaxation with two relaxation channels conditioned by the cationic unit [Co( dppm O, O)3]2+.

11.
Dalton Trans ; 46(38): 13135-13144, 2017 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-28945256

RESUMO

Two µ-phenoxo-µ1,1-azide dinuclear CoIIICoII complexes [CoIII(N3)2L1(µ1,1-N3)CoII(N3)]·MeOH (1) and [CoIII(N3)2L2(µ1,1-N3)CoII(N3)]·MeOH (2) (HL1 and HL2 are two Schiff base ligands having N2O-N2O compartments) both possess one hexacoordinate Co(iii) and one pentacoordinate Co(ii) center. DC magnetic susceptibility and magnetization measurements show an appreciable amount of positive magnetic anisotropy (D/hc∼ 40 cm-1) that is also confirmed by ab initio CASSCF calculations. AC susceptibility measurements of 1 reveal that it exhibits a slow magnetic relaxation with two relaxation channels. The external magnetic field supports the low-frequency (LF) channel that escapes on heating more progressively than the high-frequency (HF) branch. The relaxation time is as slow as τ = 255 ms at T = 1.9 K and BDC = 0.6 T, where the LF mole fraction is 69%. The complex 2 also displays similar field-supported slow magnetic relaxation with two relaxation channels.

12.
Dalton Trans ; 46(33): 10950-10956, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28766674

RESUMO

A mononuclear hexacoordinate complex [Co(pydm)2](dnbz)2 formed from 2,6-pyridinedimethanol in the coordination sphere of Co(ii) and dinitrobenzoato anions exhibits magnetic anisotropy of an easy axis type and a field induced slow magnetic relaxation with manifold relaxation channels. The low-frequency relaxation time is as slow as τLF = 0.13 s at BDC = 0.4 T and T = 1.9 K.

13.
Chemistry ; 23(33): 7990-7996, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28326629

RESUMO

An unprecedented reversible dynamic transformation is reported in a metal-organic framework involving bond formation, which is accompanied by two important structural changes; achiral to chiral and two- to three-dimensions. Using two bent organic ligands (diimpym=4,6-di(1H-imidazol-1-yl)pyrimidine; H2 npta=5-nitroisophthalic acid) and CoII (NO3 )2 ⋅6 H2 O the coordination polymer Co(diimpym)(npta)⋅CH3 OH, (1⋅CH3 OH), was obtained solvothermally. Its structure consists of knitted pairs of square layers (44 -sql net) of five-coordinated Co and disordered methanol, and it crystallized in the achiral Pbca space group at room temperature. It undergoes a single crystal to single crystal (SC-SC) transformation to a 3D interpenetrated framework (α-polonium-type net, pcu) of six-coordinated Co and ordered methanol in the chiral P21 21 21 space group below 220 K. Most unusual is the dynamic temperature-dependent shortening of a Co⋅⋅⋅O connection from a non-bonded 2.640 Š(298 K) to a bonded 2.347 Šdistance (100 K) transforming the square pyramidal cobalt polyhedron to a distorted octahedron. The desolvated crystals (1) obtained at 480 K retain the full crystallinity and crystallize in the achiral Pbca space group between 100 and 298 K but the dynamic shortening of the Co⋅⋅⋅O distance connecting the layers into the 3D pcu framework structure is observed. Following post-synthetic insertion of ethanol (1⋅CH3 CH2 OH) it does not exhibit the transformation and retains the knitted 2D achiral Pbca structure for all temperatures (100-298 K) and the ethanol is always disordered. The structural analyses thus conclude that the ordering of the methanol induces the chirality while the available space controls the dynamic motion of the knitted 2D networks into the 3D interpenetrated framework. Consequently, 1 selectively adsorbs CO2 to N2 and exhibits Type-III isotherms indicating dynamic motion of the 2D networks to accommodate the CO2 at 273 and 298 K in contrast to the rigidity of the 3D framework at 77 K preventing N2 from penetrating the solid. The magnetic properties are also reported.

14.
Inorg Chem ; 56(3): 1478-1482, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28068067

RESUMO

A mononuclear hexacoordinate Cu(II) complex shows a field induced slow magnetic relaxation that is not facilitated by an energy barrier to spin reversal due to the zero-field splitting. Two relaxation channels were found: the magnetic field strongly supports the low-frequency relaxation path with a relaxation time as long as τ = 0.8 s at T = 1.9 K and B = 1.5 T. The mechanism of the relaxation at low temperature involves the dominant Raman process for this S = 1/2 spin system along with a temperature-independent term belonging to a quantum tunneling.

15.
Inorg Chem ; 53(16): 8200-2, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25084067

RESUMO

Pentacoordinate complex [CoL(3)Cl2] with a tridentate antenna-like ligand L(3) forms a dimer held by short π-π stacking with head-to-head contacts at 3.4 Å. The direct-current (dc) magnetic susceptibility and magnetization data confirm weak ferromagnetic interaction and a large-magnetic anisotropy, D/hc = 150 cm(-1) and E/hc = 11.6 cm(-1). The system shows superparamagnetic behavior at low temperature that depends upon the applied magnetic field. At Bdc = 0.2 T, a low-frequency peak at the out-of-phase susceptibility is seen (ν ∼ 0.3 Hz), whereas the onset of the second peak appears at ν > 1500 Hz, indicating the existence of two slow relaxation processes.

16.
Chem Commun (Camb) ; 49(93): 10986-8, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24136154

RESUMO

Abrupt room temperature switching (T(c) = 295 K with a 5 K hysteresis) was achieved in a neutral Fe(II) complex based on a 2-(1H-pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine ligand. Structural characterization and spin crossover study (via SQUID magnetometry, photoexcitation and X-ray absorption spectroscopy) in the solid state are described.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA