Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 185: 111804, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675510

RESUMO

The emergence of drug resistance has created unmet medical need for the development of new classes of antibiotics. Innovation of new antibacterial agents with new mode of action remains a high priority universally. Triazines are six-membered, nitrogen-containing heterocyclic scaffold with a wide range of pharmaceutical properties such as antibacterial, antifungal, anticancer, antioxidants, antitubercular, antimalarial, anti-HIV, anticonvulsant, anti-inflammatory, antiulcer, and analgesic activities. The present review focuses on the recent developments in the area of medicinal chemistry to discover various chemical structures as potential antimicrobial agents and their structure-activity relationships (SAR) studies are also discussed for further rational design of this kind of derivatives.

2.
iScience ; 21: 695-705, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31733515

RESUMO

Rh-catalyzed, highly enantioselective (up to 99.8% ee) synthesis of aliphatic sulfonyl fluorides was accomplished. This protocol provides a portal to a class of novel 2-aryl substituted chiral sulfonyl fluorides, which are otherwise extremely difficult to access. This asymmetric synthesis has the feature of mild conditions, excellent functional group compatibility, and wide substrate scope (51 examples) generating a wide array of structurally unique chiral ß-arylated sulfonyl fluorides for sulfur(VI) fluoride exchange (SuFEx) click reaction and drug discovery.

3.
Eur J Med Chem ; 181: 111566, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31401538

RESUMO

The worldwide increase of AIDS, an epidemic infection in constant development has an essential and still requires potent antiretroviral chemotherapeutic agents for reducing the integer of deaths caused by HIV. Thus, there is an urgent need for new anti-HIV drug candidates with increased strength, new targets, superior pharmacokinetic properties, and compact side effects. From this viewpoint, we first review present strategies of anti-HIV drug innovation and the synthesis of heterocyclic or natural compound as anti-HIV agents for facilitating the development of more influential and successful anti-HIV agents.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Fármacos Anti-HIV/síntese química , Técnicas de Química Sintética/métodos , Desenho de Drogas , Descoberta de Drogas , Humanos , Modelos Moleculares , Relação Estrutura-Atividade
4.
Bioorg Chem ; 91: 103133, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31374524

RESUMO

The increase in antibiotic resistance due to various factors has encouraged the look for novel compounds which are active against multidrug-resistant pathogens. In this framework, chalcone-based compounds showed a diversity of pharmacological properties, and its derivatives possess a high degree of structural diversity, and it is helpful for the discovery of new therapeutic agents. The growing resistance to antibiotics worldwide has endangered their efficacy. This has led to a surging interest in the discovery of new antibacterial agents. Thus, there is an urgent need for new antibacterial drug candidates with increased strength, new targets, low cost, superior pharmacokinetic properties, and minimum side effects. The present review concluded and focuses on the recent developments in the area of medicinal chemistry to explore the diverse chemical structures of potent antibacterial agents and also describes its structure-activity relationships studies. The various synthetic structures leading to this class of neutral protective compound is common and additional structural optimization is promising for potential drug discovery and development.

5.
Eur J Med Chem ; 180: 656-672, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31352246

RESUMO

Alzheimer's disease (AD) is a well known neurodegenerative disorder alarming millions of people worldwide and the subsequent epidemiological statistics highlights the implication of the disease. AD is a multi-factorial disease, a variety of single-target directed drugs that have reached clinical trials have unsuccessful. Hence, various factors associated without set of AD have been considered in targeted drug discovery and development. Triazoles are five-membered heterocyclic scaffold due to their broad range of biological activities. The present review focuses on the recent developments in the area of medicinal chemistry to explore the diverse chemical structures of potential inhibitors of Alzheimer's disease and also look at its structure-activity relationships (SAR) studies of bioactive compounds for future discovery of suitable drug candidates. The prominence has been given on the major advancements in the medicinal brochure of this pharmacophore for the period during 2012-2019.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Triazóis/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/química , Relação Estrutura-Atividade , Triazóis/química
6.
Bioorg Chem ; 90: 103093, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31288137

RESUMO

A series of amino acids conjugated quinazolinone-Schiff's bases were synthesized and characterized by analytical and spectroscopic methods. All the synthesized analogues (8-43) and the intermediates (1-7) were screened for their in vitro antibacterial and antifungal activities. In antimicrobial activity, compounds 12-16, 21-25, 30-34 and 39-43 showed excellent antibacterial activity which is better than the antibacterial standard Streptomycin. Compounds 15, 23-25, 30-34, 36 and 38-43 showed excellent antifungal activities which is more active than the reference antifungal drug Bavistin. Further, to understand the correlation of biological activity with that of drug-receptor interaction, molecular docking was performed on active site ofglucosamine-6-Phosphate (GlcN-6-P) synthase (PDB ID: 2VF5) which showed good binding profile. Molecular docking studies and Preliminary structure-activity (SAR) relationship revealed that the tryptophan and phenylalanine conjugated quinazolinones with electron donating groups (OH and OCH3) were found to be excellent antimicrobial activities which is better than the glycine and alanine conjugated derivatives. This may be explained by the contribution of aromaticity and hydrophobicity of amino acids. Among the series, compounds 41 and 43 showed the highest docking scores for antimicrobial activity. The conjugation plays a major role in improving the biological activities of those compounds.

7.
Bioorg Chem ; 89: 103015, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31158576

RESUMO

A series of (hetero)arylethenesulfonyl fluorides (1-58) were synthesized and screened for their in vitro antioxidant (DPPH, ABTS and DMPD methods) and anti-inflammatory activities. The results revealed that compounds 4, 15, 16, 24, 25, 26, 38, 39, 40, and 54 exhibited excellent antioxidant activity using all the three performed antioxidant methods, which were superior to the standard antioxidants ascorbic acid and gallic acid. Compounds 6-9, 11, 18, 19, 21, 22, 30, 39, 40, 44, 45, 48-50, 54, 55 and 57 displayed promising anti-inflammatory activity, which were better than the reference drug indomethacin. Preliminary structure-activity relationship (SAR) revealed that compounds containing electron donating (OH and OCH3) groups on the phenyl ring possessed excellent antioxidant properties while compounds containing electron-withdrawing (Cl, NO2, F and Br) groups on the phenyl ring were found to be most potent anti-inflammatory agents. The presence of SO2F group played a crucial role in increases both antioxidant and anti-inflammatory activities.

8.
Beilstein J Org Chem ; 15: 976-980, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164935

RESUMO

A catalyst-free novel and efficient methodology for the challenging synthesis of benzo-oxetes from 2'-hydroxyacetophenones mediated by sulfuryl fluoride (SO2F2) gas has been realized. The combination of 2'-hydroxyacetophenones and SO2F2 furnishes synthetically challenging benzo-oxetanes in moderate to excellent yields. The highlight of this work is the design and synthesis of strained four-membered oxete rings.

9.
Eur J Med Chem ; 173: 117-153, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30995567

RESUMO

At present more than 250 FDA approved chlorine containing drugs were available in the market and many pharmaceutically important drug candidates in pre-clinical trials. Thus, it is quite obvious to expect that in coming decades there will be an even greater number of new chlorine-containing pharmaceuticals in market. Chlorinated compounds represent the family of compounds promising for use in medicinal chemistry. This review describes the recent advances in the synthesis of chlorine containing heterocyclic compounds as diverse biological agents and drugs in the pharmaceutical industries for the inspiration of the discovery and development of more potent and effective chlorinated drugs against numerous death-causing diseases.


Assuntos
Antibacterianos/farmacologia , Antimaláricos/farmacologia , Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores de Glicosídeo Hidrolases/farmacologia , Hidrocarbonetos Clorados/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antimaláricos/síntese química , Antimaláricos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Humanos , Hidrocarbonetos Clorados/síntese química , Hidrocarbonetos Clorados/química , Estrutura Molecular
10.
Bioorg Chem ; 87: 252-264, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30908968

RESUMO

A novel series of amino acids conjugated quinazolinone-Schiff's bases were synthesized and screened for their in vitro anticancer activity and validated by molecular docking and DNA binding studies. In the present investigations, compounds 32, 33, 34, 41, 42 and 43 showed most potent anticancer activity against tested cancer cell lines and DNA binding study using methyl green comparing to doxorubicin and ethidium bromide as a positive control respectively. The structure-activity relationship (SAR) revealed that the tryptophan and phenylalanine derived electron donating groups (OH and OCH3) favored DNA binding studies and anticancer activity whereas; electron withdrawing groups (Cl, NO2, and F) showed least anticancer activity. The molecular docking study, binding interactions of the most active compounds 33, 34, 42 and 43 stacked with A-T rich regions of the DNA minor groove by surface binding interactions were confirmed.

11.
Chem Commun (Camb) ; 55(19): 2845-2848, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30768105

RESUMO

A novel, simple and practical method for mild, efficient, cost-effective and regioselective synthesis of highly valuable 1,5-diaryl-1,2,3-triazoles was achieved through dehydrative annulation of readily available alcohols with aryl azides. The reaction proceeded at room temperature, without any metal catalysts, exhibiting excellent compatibility to a large variety of functional groups (>50 examples), resulting in up to quantitative yields.

12.
Bioorg Chem ; 86: 513-537, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30782571

RESUMO

Cancer is the second most important cause of death worldwide. There is always a demand for new anticancer drugs and continuously a wide variety of natural and synthetic compounds were developed by the researchers. Nowadays, a large number of drugs in clinical practice were found to have a high incidence of side effect and multidrug conflict. The development of novel less toxic, low cost and very energetic N-methylpicolinamide-bearing hybrids is a hot research topic in the community of medicinal chemistry. Herein we highlight the current advances in the synthesis of picolinamide-containing heterocyclic compounds as potent anticancer agents. In addition, briefly explore their structure-activity relationship studies for the inspiration of the innovation and development of more potent and effective drugs against various death-causing cancer diseases.

13.
Eur J Med Chem ; 164: 448-470, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30616053

RESUMO

Glycogen Synthase Kinase-3 (GSK-3) is a constitutively dynamic, omnipresent serine/threonine protein kinase regularly called as a "multitasking kinase" due to its pliable function in diverse signaling pathways. It exists in two isoforms i.e., GSK-3α and GSK-3ß. Inhibition of GSK-3 may be useful in curing various diseases such as Alzheimer's disease, type II diabetes, mood disorders, cancers, chronic inflammatory agents, stroke, bipolar disorders and so on, but the approach poses significant challenges. Lithium was the first GSK-3ß inhibitor to be used for therapeutic outcome and has been effectively used for many years. In recent years, a large number of structurally diverse potent GSK-3ß inhibitors are reported. The present review focuses on the recent developments in the area of medicinal chemistry to explore the diverse chemical structures of potent GSK-3ß inhibitors and also describes its structure-activity relationships (SAR) and molecular binding interactions of favorable applicability in various diseases.


Assuntos
Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Humanos , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Relação Estrutura-Atividade
14.
Bioorg Chem ; 85: 325-336, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30658232

RESUMO

In the scientific field, nanotechnology has offered multipurpose and designated functional nanoparticles (NPs) for the development of applications in nano-medicine. This present review focuses on cutting edge of nanotechnology in biomedical applications as drug carries in cancer treatment. The nanotechnology overcomes several limitations of drug delivery systems used in distinct therapeutic approaches of cancer treatment. The serious effect of conventional chemotherapeutics by nonspecific targeting, the lack of solubility, and the inability of chemotherapeutics entry to cancer cells which, offers a great opportunity for nanotechnology to play significant roles in cancer biology. The selective delivery of nano-drugs to the targeted cancer cells by the programmed way and avoiding nonspecific interactions to the healthy cells. The present review focuses on the methods of improving the size, shape and characteristics of nanomaterials which can be exploited for cancer therapy. The successful designing of nanocarriers can be tailored for cancer treatment for upcoming future as nano-medicines.

15.
Eur J Med Chem ; 162: 465-494, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30469042

RESUMO

Azepane-based compounds showed a variety of pharmacological properties, and its derivatives possess a high degree of structural diversity, and it is useful for the discovery of new therapeutic agents. The development of new less toxic, low-cost and highly active azepane-containing analogs is a hot research topic in medicinal chemistry. Now, more than 20 azepane-based drugs have been approved by FDA, and widely used to treat various types of diseases. This review highlights the recent developments of azepane-based compounds in a wide range of therapeutic applications, such as anti-cancer, anti-tubercular, anti-Alzheimer's disease, and antimicrobial agents, as well as, histamine H3 receptor inhibitors, α-glucosidase inhibitors, anticonvulsant drugs and other miscellaneous applications. We here briefly describe the structure-activity relationship (SAR) and molecular docking studies of potential bioactive compounds for future discovery of suitable drug candidates. It can serve as an inspiration for new ideas for design and development of less toxic and more powerful azepane-based drugs against numerous devastating diseases.


Assuntos
Compostos Aza/uso terapêutico , Química Farmacêutica , Descoberta de Drogas , Animais , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
16.
Eur J Med Chem ; 162: 364-377, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30453245

RESUMO

The multidrug-resistant Staphylococcus aureus (MRSA) is one of the most prevalent human pathogens involved in many minor to major disease burdens throughout the world. Inhibition of biofilm formation is an attractive strategy to treat diseases associated with MRSA infection. In the present investigation, a series of functional group diverse (hetero)aryl fluorosulfonyl analogs were designed, synthesized and tested as antibacterial agents against Staphylococcal spp., and as anti-biofilm candidates. Compounds 8, 15, and 67 were found to possess potent in vitro antibacterial activity among this class of sulfonyl fluorides (MIC = 0.818 ±â€¯0.42, 0.840 ±â€¯0.37 and 0.811 ±â€¯0.37 µg/mL respectively). The analogs 8, 15, 36, and 67 exhibited outstanding anti-biofilm properties compared to other available synthetic antibiotics. The efficacy of synthetic analogs displayed membrane-damaging effect and they are also validated by cellular content release assay. The insight physiological changes were explored by studying the intracellular redox activities through changing cyclic voltammetric (CV) method. The compounds 8, 15, 22, 32, 36, 51, and 67 were found to participate in the interfering in the electron transport chain (ETC) of MRSA. The analogs 8, 15, and 67 possess great potentiality for discovery and development of anti-staphylococcal drugs to treat the MRSA infections.


Assuntos
Infecções Bacterianas/tratamento farmacológico , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Fluoretos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Sulfonas/farmacologia , Biofilmes/efeitos dos fármacos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/efeitos dos fármacos , Simulação de Acoplamento Molecular , Oxirredução/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Ácidos Sulfínicos/farmacologia
17.
Eur J Med Chem ; 162: 679-734, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30496988

RESUMO

Sulfur (SVI) based moieties, especially, the sulfonyl or sulfonamide based analogues have showed a variety of pharmacological properties, and its derivatives propose a high degree of structural diversity that has established useful for the finding of new therapeutic agents. The developments of new less toxic, low cost and highly active sulfonamides containing analogues are hot research topics in medicinal chemistry. Currently, more than 150 FDA approved Sulfur (SVI)-based drugs are available in the market, and they are widely used to treat various types of diseases with therapeutic power. This comprehensive review highlights the recent developments of sulfonyl or sulfonamides based compounds in huge range of therapeutic applications such as antimicrobial, anti-inflammatory, antiviral, anticonvulsant, antitubercular, antidiabetic, antileishmanial, carbonic anhydrase, antimalarial, anticancer and other medicinal agents. We believe that, this review article is useful to inspire new ideas for structural design and developments of less toxic and powerful Sulfur (SVI) based drugs against the numerous death-causing diseases.


Assuntos
Descoberta de Drogas , Enxofre/uso terapêutico , Química Farmacêutica/métodos , Humanos , Ácidos Sulfínicos/uso terapêutico , Sulfonamidas/uso terapêutico , Terapêutica/métodos
18.
Bioorg Chem ; 81: 389-395, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30199841

RESUMO

Hydrazone compounds were considered as a useful moiety in drug design development. Therefore, these studies were aimed at the synthesis of new dihydrazones and were screened for their in vitro H+/K+-ATPase and anti-inflammatory activities. The results revealed that compounds 9 (22 ±â€¯0.62 µg/mL), 10 (26 ±â€¯0.91 µg/mL), 15 (24 ±â€¯0.44 µg/mL), 16 (28 ±â€¯0.63 µg/mL), 17 (12 ±â€¯0.38 µg/mL), 18 (14 ±â€¯0.47 µg/mL), 19 (26 ±â€¯0.54 µg/mL), 20 (16 ±â€¯0.41 µg/mL), 25 (06 ±â€¯0.68 µg/mL) and 26 (08 ±â€¯0.43 µg/mL) showed excellent H+/K+-ATPase activity and their IC50 value were lower than the standard drug Omerazole (48 ±â€¯0.12 µg/mL). Compounds 5 (28 ±â€¯0.65 µg/mL), 6 (24 ±â€¯0.61 µg/mL), 7 (28 ±â€¯0.64 µg/mL), 8 (26 ±â€¯0.45 µg/mL), 11 (30 ±â€¯0.74 µg/mL), 12 (28 ±â€¯0.40 µg/mL), 13 (32 ±â€¯0.24 µg/mL), 14 (30 ±â€¯0.55 µg/mL) and 21 (08 ±â€¯0.47 µg/mL), 22 (12 ±â€¯0.47 µg/mL), 23 (10 ±â€¯0.51 µg/mL) and 24 (14 ±â€¯0.84 µg/mL) showed better anti-inflammatory activity compared to standard indomethacin (44 ±â€¯0.15 µg/mL). The structure activity relationship (SAR) showed that, electron donating groups (OH, OCH3) favored the H+/K+-ATPase and antioxidants activity, whereas, electron withdrawing groups (F, Cl, Br and NO2) favored the anti-inflammatory activity. Furthermore, molecular docking study was performed to investigate the binding interactions of the most active analogs with the active site of H+/K+-ATPase enzyme. Compounds 25 (G-score = -9.063) and 26 (G-score = -8.977) showed the highest docking G-scores for H+/K+-ATPase inhibition activity.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Hidrazonas/química , Hidrazonas/farmacologia , Inibidores da Bomba de Prótons/química , Inibidores da Bomba de Prótons/farmacologia , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Domínio Catalítico/efeitos dos fármacos , Células Cultivadas , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Desenho de Drogas , ATPase Trocadora de Hidrogênio-Potássio/química , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ovinos , Relação Estrutura-Atividade
19.
Medchemcomm ; 9(4): 713-724, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108962

RESUMO

Natural products are important leads in drug discovery. The search for effective plant-derived agents or their synthetic analogues has continued to be of interest to biologists and chemists for a long time. Herein, we have synthesized a novel compound, P1C, and P1C-Tit*CAgNPs from chitosan; P1C is a precursor and an anti-inflammatory candidate, which has been validated by molecular docking studies. The synthesized P1C-Tit*CAgNPs showed monodisperse, spherical, and cationic nature and antioxidant properties, protecting destabilization of the erythrocyte membrane by the azo compound 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH); the involvement of NPs as a protective agent for biomolecules, such as DNA and protein, followed by the treatment of NPs with AAPH was confirmed. The inhibition of cellular damage and leakage of cellular inflammatory agents was confirmed by AFM, SEM, TEM, SDS-PAGE, LDH, and PLA2 enzyme inhibition via in vitro studies. The anti-inflammatory property of P1C was further validated by in silico molecular docking studies and showed that, the P1C best pose aligned to PLA2 compared to standard drug. The significant anticancer property of P1C-Tit*CAgNPs was confirmed against MCF7, U373, and C6 cancer cell lines. Thus, the present study highlights the synthesized P1C in P1C-Tit*CAgNPs as a target PLA2-specific anti-inflammatory candidate, and further tuning of small and development-functionalized nanoparticles has a great future in medicine; hence, their clinical applications are warranted.

20.
Bioorg Chem ; 81: 107-118, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30118982

RESUMO

A series of aryl fluorosulfate analogues (1-37) were synthesized and tested for in vitro antibacterial and antifungal studies, and validated by docking studies. The compounds 9, 12, 14, 19, 25, 26, 35, 36 and 37 exhibited superior antibacterial potency against tested bacterial strains, while compounds 2, 4, 5, 15, 35, 36 and 37 were found to have better antifungal activity against tested fungal strains, compared to standard antibiotic gentamicin and ketoconazole respectively. Among all the synthesized 37 analogs, compounds 25, 26, 35, 36 and 37 displayed excellent anti-biofilm property against Staphylococcus aureus. The structure-activity relationship (SAR) revealed that the antimicrobial activity depends upon the presence of -OSO2F group and slender effect of different substituent's on the phenyl rings. The electron donating (OCH3) groups in analogs increase the antibacterial activity, and interestingly the electron withdrawing (Cl, NO2, F and Br) groups increase the antifungal activity (except compound 35, 36 and 37). The mechanism of potent compounds showed membrane damage on bacteria confirmed by SEM. Compounds 35, 36 and 37 exhibited highest glide g-scores in molecular docking studies and validated the biocidal property.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Fluoretos/farmacologia , Simulação de Acoplamento Molecular , Ácidos Sulfúricos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Aspergillus niger/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fluoretos/síntese química , Fluoretos/química , Fusarium/efeitos dos fármacos , Humanos , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Ácidos Sulfúricos/síntese química , Ácidos Sulfúricos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA