Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 267: 115442, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254682

RESUMO

The atmospheric circulation plays a critical role in the global transport and deposition of atmospheric pollutants such as mercury (Hg). Desert dust emissions contribute to nearly 60-95% of the global dust budget and thus, desert dust may facilitate atmospheric Hg transport and deposition to the downwind regions worldwide. The role of desert dust in biogeochemical cycling of Hg, however, has not been well recognized by the Hg research community. In this study, we measured the concentration of particulate bound Hg (HgP) in total suspended particulate (TSP) collected from China's largest desert, Taklimakan Desert, between 2013 and 2017. The results show that HgP concentrations over the Taklimakan Desert atmosphere are remarkably higher than those observed from background sites in China and are even comparable to those measured in most of the Chinese metropolitan cities. Moreover, HgP concentrations in the Taklimakan Desert exhibit a distinct seasonal pattern peaking during dust storm outbreak periods in spring and summer (March to August). A preliminary estimation demonstrates that export of total Hg associated with atmospheric dust from the Taklimakan Desert could be 59.7 ± 60.3 (1SD) Mg yr-1. The unexpectedly high HgP concentrations during duststorms, together with consistent seasonal pattern of Hg revealed from the snow/ice, clearly demonstrate that Asian desert dust could act as a significant carrier of atmospheric Hg to the cryosphere of Western China and even can have further global reach.

2.
Environ Pollut ; 268(Pt A): 115906, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33120333

RESUMO

Fluorescence spectroscopy is a commonly used technique to analyze dissolved organic matter in aquatic environments. Given the high sensitivity and non-destructive analysis, fluorescence has recently been used to study water-soluble organic carbon (WSOC) in atmospheric aerosols, which have substantial abundance, various sources and play an important role in climate change. Yet, current research on WSOC characterization is rather sparse and limited to a few isolated sites, making it challenging to draw fundamental and mechanistic conclusions. Here we presented a review of the fluorescence properties of atmospheric WSOC reported in various field and laboratory studies, to discuss the current advances and limitations of fluorescence applications. We highlighted that photochemical reactions and relevant aging processes have profound impacts on fluorescence properties of atmospheric WSOC, which were previously unnoticed for organic matter in aquatic environments. Furthermore, we discussed the differences in sources and chemical compositions of fluorescent components between the atmosphere and hydrosphere. We concluded that the commonly used fluorescence characteristics derived from aquatic environments may not be applicable as references for atmospheric WSOC. We emphasized that there is a need for more systematic studies on the fluorescence properties of atmospheric WSOC and to establish a more robust reference and dataset for fluorescence studies in atmosphere based on extensive source-specific experiments.

3.
Environ Sci Technol ; 54(16): 9928-9938, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32628470

RESUMO

Increasing air pollution in South Asia has serious consequences for air quality and human/ecosystem health within the region. South Asia, including India and Nepal, suffers from severe air pollution, including high concentrations of aerosols, as well as gaseous pollutants. One of the often-neglected sources contributing to the regional air pollution is garbage burning. It is mostly related to numerous yet small, open, uncontrolled fires burning diverse fuels, making it difficult to quantify activity and emissions. In this study, we attempted to quantify the total emissions due to garbage burning and its contribution to regional air quality, using new observational data, a new inventory, and a regional chemical transport model. We implemented the newly available emission factors (EFs) from a recent field campaign, Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE), which took place in April 2015. Using a chemical transport model-Weather Research and Forecasting model coupled with Chemistry version 3.5 (WRF-Chem)-and three emission scenarios, we assessed the impact of open garbage burning emissions on regional air quality. Our results show that garbage burning emissions could increase PM2.5 concentrations by nearly 30% in India and Nepal, and result in ∼300 000 premature deaths from chronic obstructive pulmonary disease in the two countries.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Ásia , Ecossistema , Monitoramento Ambiental , Humanos , Índia , Nepal , Material Particulado/análise
4.
Environ Sci Technol ; 54(9): 5429-5436, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32242420

RESUMO

Mercury (Hg) and lead (Pb) accumulation since the Industrial Revolution has been generally observed to increase concurrently in lake sedimentary records around the world. Located downwind during the monsoon season from the rapidly developing South Asia, the Himalayas and the Tibetan Plateau are expected to receive direct anthropogenic Hg and Pb loadings, yet the source, pathway, and effects of such transport remain poorly known due to logistic challenges in accessing this region. When studying the sediment record from Lake Gokyo (4750 m above sea level (a.s.l.)) in the Himalayas, we find remarkably different Hg and Pb accumulation trends over the past 260 years. Although Hg accumulation has continued to increase since the Industrial Revolution, Pb accumulation peaked during that time and has been decreasing since then. Stable isotope analysis reveals that the decoupling trends between these two elements are due to different sources and pathways of Hg and Pb in the region. Both δ202Hg and Δ199Hg have been increasing since the Industrial Revolution, suggesting that anthropogenic Hg emissions from South Asia have been continuously increasing and that the Indian monsoon-driven wet deposition of atmospheric Hg is the dominant pathway for Hg accumulation in the sediments. In contrast, analysis of 206Pb/207Pb and 208Pb/207Pb ratios suggests that Pb accumulation in the sediments originates primarily from natural sources and that the decreasing trend of Pb accumulation is most likely due to a weakening input of atmospheric mineral dust by the westerlies. These decoupling trends highlight the ongoing issue of transboundary Hg transport to the Himalayas and the Tibetan Plateau that are source waters for major freshwater systems in Asia and calls for regional and international collaborations on Hg emission controls in South Asia.


Assuntos
Mercúrio/análise , Ásia , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Chumbo
5.
Environ Pollut ; 261: 114239, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32114124

RESUMO

This study presents a comprehensive analysis of organic carbon (OC), elemental carbon (EC), and particularly the light absorption characteristics of EC and water-soluble brown carbon (WS-BrC) in total suspended particles in the Kathmandu Valley from April 2013 to January 2018. The mean OC, EC, and water-soluble organic carbon (WSOC) concentrations were 34.8 ± 27.1, 9.9 ± 5.8, and 17.4 ± 12.5 µg m-3, respectively. A clear seasonal variation was observed for all carbonaceous components with higher concentrations occurring during colder months and lower concentrations in the monsoon season. The relatively low OC/EC ratio (3.6 ± 2.0) indicates fossil fuel combustion as the primary source of carbonaceous components. The optical attenuation (ATN) at 632 nm was significantly connected with EC loading (ECS) below 15 µg cm-2 but ceased as ECS increased, reflecting the increased influence of the shadowing effect. The derived average mass absorption cross-section of EC (MACEC) (7.0 ± 4.2 m2 g-1) is comparable to that of freshly emitted EC particles, further attesting that EC was mainly produced from local sources with minimal atmospheric aging processes. Relatively intensive coating with organic aerosols and/or salts (e.g., sulfate, nitrate) was probably the reason for the slightly higher MACEC during the monsoon season, whereas increased biomass burning was a major factor leading to lower MACEC in other seasons. The average MACWS-BrC at 365 nm was 1.4 ± 0.3 m2 g-1 with minimal seasonal variations. In contrast to MACEC, biomass burning was the main reason for a higher MACWS-BrC in the non-monsoon season. The relative light absorption contribution of WS-BrC to EC was 9.9% over the 300-700 nm wavelength range, with a slightly higher ratio (13.6%) in the pre-monsoon season. Therefore, both EC and WS-BrC should be considered in the study of optical properties and radiative forcing of carbonaceous aerosols in this region.


Assuntos
Carbono , Monitoramento Ambiental , Luz , Material Particulado , Aerossóis , Biomassa , Carbono/química , Nepal , Material Particulado/química , Estações do Ano , Água/química
6.
Environ Pollut ; 257: 113616, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761583

RESUMO

Brown carbon (BrC) has been proposed as an important driving factor in climate change due to its light absorption properties. However, our understanding of BrC's chemical and optical properties are inadequate, particularly at remote regions. This study conducts a comprehensive investigation of BrC aerosols in summer (Aug. 2013) and winter (Jan. 2014) at Southeast Tibetan Plateau, which is ecologically fragile and sensitive to global warming. The concentrations of methanol-soluble BrC (MeS-BrC) are approximately twice of water-soluble BrC (WS-BrC), demonstrating the environmental importance of water-insoluble BrC are previously underestimated with only WS-BrC considered. The mass absorption efficiency of WS-BrC (0.27-0.86 m2 g-1) is lower than those in heavily polluted South Asia, indicating a distinct contrast between the two sides of Himalayas. Fluorescence reveals that the absorption of BrC is mainly attributed to humic-like and protein-like substances, which broaden the current knowledge of BrC's chromophores. Combining organic tracer, satellite MODIS data and air-mass backward trajectory analysis, this study finds BrC is mainly derived from bioaerosols and secondary formation in summer, while long-range transport of biomass burning emissions in winter. Our study provides new insights into the optical and chemical properties of BrC, which may have implications for environmental effect and sources of organic aerosols.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/análise , Carbono , Monitoramento Ambiental , Aerossóis/análise , Poluentes Atmosféricos/química , Ásia , Fluorescência , Tibet
7.
Environ Sci Technol ; 53(21): 12247-12256, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31558018

RESUMO

Nitrogenous aerosols are ubiquitous in the environment and thus play a vital role in the nutrient balance as well as the Earth's climate system. However, their abundance, sources, and deposition are poorly understood, particularly in the fragile and ecosensitive Himalayan and Tibetan Plateau (HTP) region. Here, we report concentrations of nitrogen species and isotopic composition (δ15N) in aerosol samples collected from a forest site in the HTP (i.e., Southeast Tibet). Our results revealed that both organic and inorganic nitrogen contribute almost equally with high abundance of ammonium nitrogen (NH4+-N) and water-insoluble organic nitrogen (WION), contributing ∼40% each to aerosol total nitrogen (TN). The concentrations and δ15N exhibit a significant seasonality with ∼2 times higher in winter than in summer with no significant diurnal variations for any species. Moreover, winter aerosols mainly originated from biomass burning emissions from North India and East Pakistan and reached the HTP through a long-range atmospheric transport. The TN dry deposition and total deposition fluxes were 2.04 kg ha-1 yr-1 and 6.12 kg ha-1 yr-1 respectively. Our results demonstrate that the air contamination from South Asia reach the HTP and is most likely impacting the high altitude ecosystems in an accepted scenario of increasing emissions over South Asia.


Assuntos
Poluentes Atmosféricos , Nitrogênio , Aerossóis , Ecossistema , Monitoramento Ambiental , Florestas , Índia , Paquistão , Estações do Ano , Tibet
8.
Environ Sci Technol ; 53(12): 6632-6639, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31117527

RESUMO

Cryoconite is a granular aggregate, comprised of both mineral and biological material, and known to accumulate atmospheric contaminants. In this study, cryoconite was sampled from seven high-elevation glaciers in Western China to investigate the spatial and altitudinal patterns of atmospheric mercury (Hg) accumulation in the cryoconite. The results show that total Hg (HgT) concentrations in cryoconite were significant with relatively higher Hg accumulation in the southern glaciers (66.0 ± 29.3 ng g-1), monsoon-influenced regions, than those in the northern glaciers (42.5 ± 20.7 ng g-1), westerlies-influenced regions. The altitudinal profile indicates that HgT concentrations in the northern glaciers decrease significantly with altitude, while those in the southern glaciers generally increase toward higher elevations. Unexpectedly high accumulation of methyl-Hg (MeHg) with an average of 1.0 ± 0.4 ng g-1 was also detected in the cryoconite samples, revealing the surface of cryoconite could act as a potential site for Hg methylation in alpine environments. Our preliminary estimate suggests a storage of ∼34.3 ± 17.4 and 0.65 ± 0.28 kg of HgT and MeHg from a single year of formation process in the glacier cryoconite. Therefore, glacier cryoconite could play an important role in Hg storage and transformation, which may result in downstream effects on glacier-fed ecosystems under climate warming scenario.


Assuntos
Camada de Gelo , Mercúrio , China , Ecossistema
9.
Environ Sci Technol ; 53(10): 5641-5651, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30994333

RESUMO

Black carbon (BC) is one of the major drivers of climate change, and its measurement in different environment is crucial for the better understanding of long-term trends in the Himalayan-Tibetan Plateau (HTP) as climate warming has intensified in the region. We present the measurement of BC concentration from six lake sediments in the HTP to reconstruct historical BC deposition since the pre-industrial era. Our results show an increasing trend of BC concurrent with increased anthropogenic emission patterns after the commencement of the industrialization era during the 1950s. Also, sedimentation rates and glacier melt strengthening influenced the total input of BC into the lake. Source identification, based on the char and soot composition of BC, suggests biomass-burning emissions as a major contributor to BC, which is further corroborated by open-fire occurrence events in the region. The increasing BC trend continues to recent years, indicating increasing BC emissions, mainly from South Asia.


Assuntos
Lagos , Fuligem , Ásia , Carbono , Monitoramento Ambiental , Sedimentos Geológicos , Tibet
10.
Environ Sci Technol ; 53(7): 3471-3479, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30848122

RESUMO

Brown carbon (BrC) has recently emerged as an important light-absorbing aerosol. This study provides interannual and seasonal variations in light absorption properties, chemical composition, and sources of water-soluble BrC (WS-BrC) based on PM10 samples collected in Godavari, Nepal, from April 2012 to May 2014. The mass absorption efficiency of WS-BrC at 365 nm (MAE365) shows a clear seasonal variability, with the highest MAE365 of 1.05 ± 0.21 m2 g-1 in premonsoon season and the lowest in monsoon season (0.59 ± 0.16 m2 g-1). The higher MAE365 values in nonmonsoon seasons are associated with fresh biomass burning emissions. This is further substantiated by a strong correlation ( r = 0.79, P < 0.01) between Abs365 (light absorption coefficient at 365 nm) and levoglucosan. We found, using fluorescence techniques, that humic-like and protein-like substances are the main chromophores in WS-BrC and responsible for 80.2 ± 4.1% and 19.8 ± 4.1% of the total fluorescence intensity, respectively. BrC contributes to 8.78 ± 3.74% of total light absorption over the 300-700 nm wavelength range. Considering the dominant contribution of biomass burning to BrC over Godavari, this study suggests that reduction in biomass burning emission may be a practical method for climate change mitigation in South Asia.


Assuntos
Carbono , Água , Aerossóis , Ásia , Monitoramento Ambiental , Nepal
11.
Environ Pollut ; 247: 216-228, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30677666

RESUMO

Biomass burning (BB) is one of the largest sources of carbonaceous aerosols with adverse impacts on air quality, visibility, health and climate. BB emits a few specific aromatic acids (p-hydroxybenzoic, vanillic, syringic and dehydroabietic acids) which have been widely used as key indicators for source identification of BB-derived carbonaceous aerosols in various environmental matrices. In addition, measurement of p-hydroxybenzoic and vanillic acids in snow and ice cores have revealed the historical records of the fire emissions. Despite their uniqueness and importance as tracers, our current understanding of analytical methods, concentrations, diagnostic ratios and degradation processes are rather limited and scattered in literature. In this review paper, firstly we have summarized the most established methods and protocols for the measurement of these aromatic acids in aerosols and ice cores. Secondly, we have highlighted the geographical variability in the abundances of these acids, their diagnostic ratios and degradation processes in the environments. The review of the existing data indicates that the concentrations of aromatic acids in aerosols vary greatly with locations worldwide, typically more abundant in urban atmosphere where biomass fuels are commonly used for residential heating and/or cooking purposes. In contrast, their concentrations are lowest in the polar regions which are avoid of localized emissions and largely influenced by long-range transport. The diagnostic ratios among aromatic acids can be used as good indicators for the relative amounts and types of biomass (e.g. hardwood, softwood and herbaceous plants) as well as photochemical oxidation processes. Although studies suggest that the degradation processes of the aromatic acids may be controlled by light, pH and hygroscopicity, a more careful investigation, including closed chamber studies, is highly appreciated.


Assuntos
Aerossóis/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Atmosfera/química , Biomassa , Fogo , Material Particulado/análise
12.
Sci Total Environ ; 697: 134150, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32380618

RESUMO

Mercury (Hg) is one of the most toxic heavy metals, and its cycle is mainly controlled by oxidation-reduction reactions carried out by photochemical or microbial process under suitable conditions. The deposition and accumulation of methylmercury (MeHg) in various ecosystems, including the cryospheric components such as snow, meltwater, glaciers, and ice sheet, and subsequently in the food chain pose serious health concerns for living beings. Unlike the abundance of knowledge about the processes of MeHg production over land and oceans, little is known about the sources and production/degradation rate of MeHg in cryosphere systems. In addition, processes controlling the concentration of Hg and MeHg in the cryosphere remains poorly understood, and filling this scientific gap has been challenging. Therefore, it is essential to study and review the deposition and accumulation by biological, physical, and chemical mechanisms involved in Hg methylation in the cryosphere. This review attempts to address knowledge gaps in understanding processes, especially biotic and abiotic, applicable for Hg methylation in the cryosphere. First, we focus on the variability in Hg concentration and mechanisms of Hg methylation, including physical, chemical, microbial, and biological processes, and transportation in the cryosphere. Then, we elaborate on the mechanism of redox reactions and biotic and abiotic factors controlling Hg methylation and biogeochemistry of Hg in the cryosphere. We also present possible mechanisms of Hg methylation with an emphasis on microbial transformation and molecular function to understand variability in Hg concentration in the cryosphere. Recent advancements in the genetic and physicochemical mechanisms of Hg methylation are also presented. Finally, we summarize and propose a method to study the unsolved issues of Hg methylation in the cryosphere.


Assuntos
Camada de Gelo/química , Mercúrio/química , Compostos de Metilmercúrio/química , Neve/química , Poluentes Químicos da Água/análise , Ecossistema , Cadeia Alimentar , Metilação
13.
Environ Sci Technol ; 52(13): 7203-7211, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29874057

RESUMO

Humic-like substances (HULIS) are major components of light-absorbing brown carbon that play an important role in Earth's radiative balance. However, their concentration, optical properties, and sources are least understood over Tibetan Plateau (TP). In this study, the analysis of total suspended particulate (TSP) samples from central of TP (i.e., Nam Co) reveal that atmospheric HULIS are more abundant in summer than that in winter without obvious diurnal variations. The light absorption ability of HULIS in winter is 2-3 times higher than that in summer. In winter, HULIS are mainly derived from biomass burning emissions in South Asia by long-range transport. In contrast, the oxidation of anthropogenic and biogenic precursors from northeast part of India and southeast of TP are major sources of HULIS in summer.


Assuntos
Poluentes Atmosféricos , Substâncias Húmicas , Aerossóis , Ásia , Monitoramento Ambiental , Índia , Tibet
14.
J Environ Manage ; 148: 153-63, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25199599

RESUMO

In the present-day scenario of growing anthropogenic activities, carbonaceous aerosols contribute significantly (∼20-70%) to the total atmospheric particulate matter mass and, thus, have immense potential to influence the Earth's radiation budget and climate on a regional to global scale. In addition, formation of secondary organic aerosols is being increasingly recognized as an important process in contributing to the air-pollution and poor visibility over urban regions. It is, thus, essential to study atmospheric concentrations of carbonaceous species (EC, OC and WSOC), their mixing state and absorption properties on a regional scale. This paper presents the comprehensive data on emission sources, chemical characteristics and optical properties of carbonaceous aerosols from selected urban sites in the Indo-Gangetic Plain (IGP) and from a high-altitude location in the central Himalaya. The mass concentrations of OC, EC and WSOC exhibit large spatio-temporal variability in the IGP. This is attributed to seasonally varying emissions from post-harvest agricultural-waste burning, their source strength, boundary layer dynamics and secondary aerosol formation. The high concentrations of OC and SO4(2-), and their characteristic high mass scattering efficiency, contribute significantly to the aerosol optical depth and scattering coefficient. This has implications to the assessment of single scattering albedo and aerosol radiative forcing on a regional scale.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos , Poluição do Ar , Altitude , Carbono/análise , Clima , Sistemas de Informação Geográfica , Humanos , Índia , Material Particulado/análise , Estações do Ano , Sulfatos/análise
15.
Environ Sci Technol ; 46(15): 8082-9, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22788781

RESUMO

The quantification of the radiative impacts of light absorbing ambient black carbon (BC) particles strongly depends on accurate measurements of BC mass concentration and absorption coefficient (ß(abs)). In this study, an experiment has been conducted to quantify the influence of hygroscopic growth of ambient particles on light absorption. Using the hygroscopic growth factor (i.e., Zdanovskii-Stokes-Robinson (ZSR) approach), a model has been developed to predict the chemical composition of particles based on measurements, and the absorption and scattering coefficients are derived using a core-shell assumption with light extinction estimates based on Mie theory. The estimated optical properties agree within 7% for absorption coefficient and 30% for scattering coefficient with that of measured values. The enhancement of absorption is found to vary according to the thickness of the shell and BC mass, with a maximum of 2.3 for a shell thickness of 18 nm for the particles. The findings of this study underline the importance of considering aerosol-mixing states while calculating their radiative forcing.


Assuntos
Aerossóis , Carbono/química , Modelos Teóricos , Absorção
16.
Environ Sci Technol ; 46(2): 686-95, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22192056

RESUMO

The first simultaneous measurements and analytical data on atmospheric concentrations of PM(2.5), PM(10), inorganic constituents, carbonaceous species, and their optical properties (aerosol optical depth, AOD; absorption coefficient, b(abs); mass absorption efficiency, σ(abs); and single scattering albedo, SSA) from an urban site (Kanpur) in the Indo-Gangetic Plain are reported here. Significantly high aerosol mass concentration (>100 µg m(-3)) and AOD (> 0.3) are seen as a characteristic feature throughout the sampling period, from October 2008 to April 2009. The temporal variability in the mass fractions of carbonaceous species (EC, OC, and WSOC) is pronounced during October-January when emissions from biomass burning are dominant and OC is a major constituent (∼30%) of PM(2.5) mass. The WSOC/OC ratio varies from 0.21 to 0.65, suggesting significant contribution from secondary organic aerosols (SOAs). The mass fraction of SO(4)(2-) in PM(2.5) (Av: 12.5%) exceeds that of NO(3)(-) and NH(4)(+). Aerosol absorption coefficient (@ 678 nm) decreases from 90 Mm(-1) (in December) to 20 Mm(-1) (in April), and a linear regression analysis of the data for b(abs) and EC (n = 54) provides a measure of the mass absorption efficiency of EC (9.6 m(2) g(-1)). In contrast, scattering coefficient (@ 678 nm) increases from 98 Mm(-1) (in January) to 1056 Mm(-1) (in April) and an average mass scattering efficiency of 3.0 ± 0.9 m(2) g(-1) is obtained for PM(10) samples. The highest b(scat) was associated with the dust storm event (April 17, 2009) over northern Iraq, eastern Syria, and southern Turkey; thus, resulting in high SSA (0.93 ± 0.02) during March-April compared to 0.82 ± 0.04 in October-February. These results have implications to large temporal variability in the atmospheric radiative forcing due to aerosols over northern India.


Assuntos
Atmosfera , Biomassa , Carbono/química , Fogo , Material Particulado/química , Água/química , Poluentes Atmosféricos/química , Poeira , Ecossistema , Monitoramento Ambiental , Índia , Fenômenos Ópticos , Rios , Fatores de Tempo , Tempo (Meteorologia) , Vento
17.
Environ Sci Technol ; 43(21): 8233-9, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19924949

RESUMO

Temporal and spatial variability in the absorption coefficient (b(abs), Mm(-1)) and mass absorption efficiency (MAE, sigma(abs), m(2)g(-1)) of elemental carbon (EC) in atmospheric aerosols studied from urban, rural, and high-altitude sites is reported here. Ambient aerosols, collected on tissuquartz filters, are analyzed for EC mass concentration using thermo-optical EC-OC analyzer, wherein simultaneously measured optical-attenuation (ATN, equivalent to initial transmittance) of 678 nm laser source has been used for the determination of MAE and absorption coefficient. At high-altitude sites, measured ATN and surface EC loading (EC(s), microg cm(-2)) on the filters exhibit linear positive relationship (R(2) = 0.86-0.96), suggesting EC as a principal absorbing component. However, relatively large scatter in regression analyses for the data from urban sites suggests contribution from other species. The representative MAE of EC, during wintertime (Dec 2004), at a rural site (Jaduguda) is 6.1 +/- 2.0 m(2)g(-1). In contrast, MAE at the two high-altitude sites is 14.5 +/- 1.1 (Manora Peak) and 10.4 +/- 1.4 (Mt. Abu); and that at urban sites is 11.1 +/- 2.6 (Allahabad) and 11.3 +/- 2.2 m(2)g(-1) (Hisar). The long-term average MAE at Manora Peak (February 2005 to June 2007) is 12.8 +/- 2.9 m(2)g(-1) (range: 6.1-19.1 m(2)g(-1)). These results are unlike the constant conversion factor used for MAE in optical instruments for the determination of BC mass concentration. The absorption coefficient also shows large spatiotemporal variability; the lower values are typical of the high-altitude sites and higher values for the urban and rural atmosphere. Such large variability documented for the absorption parameters suggests the need for their suitable parametrization in the assessment of direct aerosol radiative forcing on a regional scale.


Assuntos
Aerossóis/análise , Altitude , Carbono/análise , Cidades , Absorção , Geografia , Índia , Peso Molecular , Estações do Ano , Temperatura , Fatores de Tempo , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA