Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Nanomaterials (Basel) ; 10(5)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357400


Zirconium phosphate (ZrP) nanomaterials have been studied extensively ever since the preparation of the first crystalline form was reported in 1964. ZrP and its derivatives, because of their versatility, have found applications in several fields. Herein, we provide an overview of some advancements made in the preparation of ZrP nanomaterials, including exfoliation and morphology control of the nanoparticles. We also provide an overview of the advancements made with ZrP as an inorganic support for the electrocatalysis of the oxygen evolution reaction (OER). Emphasis is made on how the preparation of the ZrP electrocatalysts affects the activity of the OER.

Dalton Trans ; 49(12): 3892-3900, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-31894216


The electrochemical oxygen evolution reaction (OER) is the half-cell reaction for many clean-energy production technologies, including water electrolyzers and metal-air batteries. However, its sluggish kinetics hinders the performance of those technologies, impeding them from broader implementation. Recently, we reported the use of zirconium phosphate (ZrP) as a support for transition metal catalysts for the oxygen evolution reaction (OER). These catalysts achieve promising overpotentials with high mass activities. Herein, we synthesize ZrP structures with controlled morphology: hexagonal platelets, rods, cubes, and spheres, and subsequently modify them with Co(ii) and Ni(ii) cations to assess their electrochemcial OER behavior. Through inductively coupled plasma mass-spectrometry measurements, the maximum ion exchange capacity is found to vary based on the morphology of the ZrP structure and cation selection. Trends in geometric current density and mass activity as a function of cation selection are discussed. We find that the loading and coverage of cobalt and nickel species on the ZrP supports are key factors that control OER performance.

Inorg Chem ; 56(17): 10824-10831, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28832122


There are few examples of the isolation of analogous metal complexes bearing [η5-Cp*] and [η4-Cp*H] (Cp* = pentamethylcyclopentadienyl) complexes within the same metal/ligand framework, despite the relevance of such structures to catalytic applications. Recently, protonation of Cp*Rh(bpy) (bpy = 2,2'-bipyridyl) has been shown to yield a complex bearing the uncommon [η4-Cp*H] ligand, rather than generating a [RhIII-H] complex. We now report the purification and isolation of this protonated species, as well as characterization of analogous complexes of 1,10-phenanthroline (phen). Specifically, reaction of Cp*Rh(bpy) or Cp*Rh(phen) with 1 equiv of Et3NH+Br- affords rhodium compounds bearing endo-η4-pentamethylcyclopentadiene (η4-Cp*H) as a ligand. NMR spectroscopy and single-crystal X-ray diffraction studies confirm protonation of the Cp* ligand, rather than formation of metal hydride complexes. Analysis of new structural data and electronic spectra suggests that phen is significantly reduced in Cp*Rh(phen), similar to the case of Cp*Rh(bpy). Backbonding interactions with olefinic motifs are activated by formation of [η4-Cp*H]; protonation of [Cp*] stabilizes the low-valent metal center and results in loss of reduced character on the diimine ligands. In accord with these changes in electronic structure, electrochemical studies reveal a distinct manifold of redox processes that are accessible in the [Cp*H] complexes in comparison with their [Cp*] analogues; these processes suggest new applications in catalysis for the complexes bearing endo-η4-Cp*H.