Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
EMBO Mol Med ; 13(9): e14332, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34468083

RESUMO

Congenital disorders of glycosylation are a genetically and phenotypically heterogeneous family of diseases affecting the co- and posttranslational modification of proteins. Using exome sequencing, we detected biallelic variants in GFUS (NM_003313.4) c.[632G>A];[659C>T] (p.[Gly211Glu];[Ser220Leu]) in a patient presenting with global developmental delay, mild coarse facial features and faltering growth. GFUS encodes GDP-L-fucose synthase, the terminal enzyme in de novo synthesis of GDP-L-fucose, required for fucosylation of N- and O-glycans. We found reduced GFUS protein and decreased GDP-L-fucose levels leading to a general hypofucosylation determined in patient's glycoproteins in serum, leukocytes, thrombocytes and fibroblasts. Complementation of patient fibroblasts with wild-type GFUS cDNA restored fucosylation. Making use of the GDP-L-fucose salvage pathway, oral fucose supplementation normalized fucosylation of proteins within 4 weeks as measured in serum and leukocytes. During the follow-up of 19 months, a moderate improvement of growth was seen, as well as a clear improvement of cognitive skills as measured by the Kaufmann ABC and the Nijmegen Pediatric CDG Rating Scale. In conclusion, GFUS-CDG is a new glycosylation disorder for which oral L-fucose supplementation is promising.

2.
Nutrients ; 13(7)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34371833

RESUMO

Among the human milk oligosaccharides (HMOS), the galactosyllactoses (GLs) are only limitedly studied. This study aims to describe the presence and relative levels of HMOS, including GLs, in human milk (HM) according to maternal Secretor and Lewis (SeLe) phenotype and lactation stage. Relative levels of 19 HMOS were measured in 715 HM samples collected in the first 4 months postpartum from 371 donors participating in the PreventCD study. From a subset of 24 Dutch women (171 HM samples), samples were collected monthly up to 12 months postpartum and were additionally analyzed for relative and absolute levels of ß6'-GL, ß3'-GL and α3'-GL. Maternal SeLe phenotype or HM group was assigned based on the presence of specific fucosylated HMOS. Most HMOS, including ß6'- and ß3'-GL, were present in the vast majority (≥75%) of HM samples, whereas others (e.g., LNDFH II, 2'-F-LNH and α3'-GL) only occurred in a low number (<25%) of samples. Clear differences were observed between the presence and relative levels of the HMOS according to the maternal phenotype and lactation stage. Absolute concentrations of ß6'-GL and ß3'-GL were higher in HM group IV samples compared to samples of the other three HM groups. ß3'-GL was also higher in HM group II samples compared to HM group I samples. ß3'-GL and ß6'-GL were stable over lactation stages. In conclusion, presence and levels of HMOS vary according to HM group and lactation stage. Not all HMOS behave similarly: some HMOS depend strongly on maternal phenotype and/or lactation stage, whereas others do not. ß3'-GL and ß6'-GL were present in low concentrations in over 75% of the analyzed HM samples and showed differences between HM groups, but not between the lactation stages.


Assuntos
Lactação/fisiologia , Fenômenos Fisiológicos da Nutrição Materna/genética , Leite Humano/química , Oligossacarídeos/análise , Trissacarídeos/análise , Adulto , Feminino , Humanos , Fenótipo , Período Pós-Parto
3.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445776

RESUMO

Different manufacturing processes and storage conditions of biotherapeutics can lead to a significant variability in drug products arising from chemical and enzymatic post-translational modifications (PTMs), resulting in the co-existence of a plethora of proteoforms with different physicochemical properties. To unravel the heterogeneity of these proteoforms, novel approaches employing strong cation-exchange (SCX) high-performance liquid chromatography (HPLC) hyphenated to mass spectrometry (MS) using a pH gradient of volatile salts have been developed in recent years. Here, we apply an established SCX-HPLC-MS method to characterize and compare two rituximab-based biotherapeutics, the originator MabThera® and its Indian copy product Reditux™. The study assessed molecular differences between the two drug products in terms of C-terminal lysine variants, glycosylation patterns, and other basic and acidic variants. Overall, MabThera® and Reditux™ displayed differences at the molecular level. MabThera® showed a higher degree of galactosylated and sialylated glycoforms, while Reditux™ showed increased levels of oligomannose and afucosylated glycoforms. Moreover, the two drug products showed differences in terms of basic variants such as C-terminal lysine and N-terminal truncation, present in Reditux™ but not in MabThera®. This study demonstrates the capability of this fast SCX-HPLC-MS approach to compare different drug products and simultaneously assess some of their quality attributes.


Assuntos
Anticorpos Monoclonais/química , Antineoplásicos Imunológicos/química , Cátions/química , Rituximab/química , Medicamentos Biossimilares/química , Cromatografia de Afinidade/métodos , Cromatografia Líquida de Alta Pressão/métodos , Glicosilação , Espectrometria de Massas/métodos
4.
Microb Cell Fact ; 20(1): 162, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34419057

RESUMO

BACKGROUND: Sulfate modification of N-glycans is important for several biological functions such as clearance of pituitary hormones or immunoregulation. Yet, the prevalence of this N-glycan modification and its functions remain largely unexplored. Characterization of N-glycans bearing sulfate modifications is hampered in part by a lack of enzymes that enable site-specific detection of N-glycan sulfation. In this study, we used functional metagenomic screening to identify enzymes that act upon sulfated N-acetylglucosamine (GlcNAc). Using multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) -based glycoanalysis we proved their ability to act upon GlcNAc-6-SO4 on N-glycans. RESULTS: Our screen identified a sugar-specific sulfatase that specifically removes sulfate from GlcNAc-6-SO4 when it is in a terminal position on an N-glycan. Additionally, in the absence of calcium, this sulfatase binds to the sulfated glycan but does not remove the sulfate group, suggesting it could be used for selective isolation of sulfated N-glycans. Further, we describe isolation of a sulfate-dependent hexosaminidase that removes intact GlcNAc-6-SO4 (but not asulfated GlcNAc) from a terminal position on N-glycans. Finally, the use of these enzymes to detect the presence of sulfated N-glycans by xCGE-LIF is demonstrated. CONCLUSION: The present study demonstrates the feasibility of using functional metagenomic screening combined with glycoanalytics to discover enzymes that act upon chemical modifications of glycans. The discovered enzymes represent new specificities that can help resolve the presence of GlcNAc-6-SO4 in N-glycan structural analyses.

5.
Commun Biol ; 4(1): 832, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215830

RESUMO

Sialyl-Lewis x (sLex, CD15s) is a tetra-saccharide on the surface of leukocytes required for E-selectin-mediated rolling, a prerequisite for leukocytes to migrate out of the blood vessels. Here we show using flow cytometry that sLex expression on basophils and mast cell progenitors depends on fucosyltransferase 6 (FUT6). Using genetic association data analysis and qPCR, the cell type-specific defect was associated with single nucleotide polymorphisms (SNPs) in the FUT6 gene region (tagged by rs17855739 and rs778798), affecting coding sequence and/or expression level of the mRNA. Heterozygous individuals with one functional FUT6 gene harbor a mixed population of sLex+ and sLex- basophils, a phenomenon caused by random monoallelic expression (RME). Microfluidic assay demonstrated FUT6-deficient basophils rolling on E-selectin is severely impaired. FUT6 null alleles carriers exhibit elevated blood basophil counts and a reduced itch sensitivity against insect bites. FUT6-deficiency thus dampens the basophil-mediated allergic response in the periphery, evident also in lower IgE titers and reduced eosinophil counts.


Assuntos
Basófilos/metabolismo , Fucosiltransferases/genética , Expressão Gênica , Antígeno Sialil Lewis X/biossíntese , Sequência de Bases , Basófilos/citologia , Células Cultivadas , Estudos de Coortes , Selectina E/metabolismo , Fucosiltransferases/deficiência , Perfilação da Expressão Gênica/métodos , Humanos , Contagem de Leucócitos , Migração e Rolagem de Leucócitos/genética , Migração e Rolagem de Leucócitos/fisiologia , Polimorfismo de Nucleotídeo Único , Homologia de Sequência do Ácido Nucleico
6.
Development ; 148(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34106226

RESUMO

Defects in the evolutionarily conserved protein-glycosylation machinery during embryonic development are often fatal. Consequently, congenital disorders of glycosylation (CDG) in human are rare. We modelled a putative hypomorphic mutation described in an alpha-1,3/1,6-mannosyltransferase (ALG2) index patient (ALG2-CDG) to address the developmental consequences in the teleost medaka (Oryzias latipes). We observed specific, multisystemic, late-onset phenotypes, closely resembling the patient's syndrome, prominently in the facial skeleton and in neuronal tissue. Molecularly, we detected reduced levels of N-glycans in medaka and in the patient's fibroblasts. This hypo-N-glycosylation prominently affected protein abundance. Proteins of the basic glycosylation and glycoprotein-processing machinery were over-represented in a compensatory response, highlighting the regulatory topology of the network. Proteins of the retinal phototransduction machinery, conversely, were massively under-represented in the alg2 model. These deficiencies relate to a specific failure to maintain rod photoreceptors, resulting in retinitis pigmentosa characterized by the progressive loss of these photoreceptors. Our work has explored only the tip of the iceberg of N-glycosylation-sensitive proteins, the function of which specifically impacts on cells, tissues and organs. Taking advantage of the well-described human mutation has allowed the complex interplay of N-glycosylated proteins and their contribution to development and disease to be addressed.


Assuntos
Manosiltransferases/genética , Manosiltransferases/metabolismo , Oryzias/genética , Oryzias/metabolismo , Animais , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Modelos Animais de Doenças , Fibroblastos/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Humanos , Mutação , Fenótipo , Polissacarídeos , Retinite Pigmentosa
7.
Sci Rep ; 11(1): 5147, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664361

RESUMO

Here, we present for the first time, a site-specific N-glycosylation analysis of proteins from a Brazilian Zika virus (ZIKV) strain. The virus was propagated with high yield in an embryo-derived stem cell line (EB66, Valneva SE), and concentrated by g-force step-gradient centrifugation. Subsequently, the sample was proteolytically digested with different enzymes, measured via a LC-MS/MS-based workflow, and analyzed in a semi-automated way using the in-house developed glyXtoolMS software. The viral non-structural protein 1 (NS1) was glycosylated exclusively with high-mannose structures on both potential N-glycosylation sites. In case of the viral envelope (E) protein, no specific N-glycans could be identified with this method. Nevertheless, N-glycosylation could be proved by enzymatic de-N-glycosylation with PNGase F, resulting in a strong MS-signal of the former glycopeptide with deamidated asparagine at the potential N-glycosylation site N444. This confirmed that this site of the ZIKV E protein is highly N-glycosylated but with very high micro-heterogeneity. Our study clearly demonstrates the progress made towards site-specific N-glycosylation analysis of viral proteins, i.e. for Brazilian ZIKV. It allows to better characterize viral isolates, and to monitor glycosylation of major antigens. The method established can be applied for detailed studies regarding the impact of protein glycosylation on antigenicity and human pathogenicity of many viruses including influenza virus, HIV and corona virus.

8.
J Biol Chem ; 296: 100433, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33610554

RESUMO

Defects in protein O-mannosylation lead to severe congenital muscular dystrophies collectively known as α-dystroglycanopathy. A hallmark of these diseases is the loss of the O-mannose-bound matriglycan on α-dystroglycan, which reduces cell adhesion to the extracellular matrix. Mutations in protein O-mannose ß1,2-N-acetylglucosaminyltransferase 1 (POMGNT1), which is crucial for the elongation of O-mannosyl glycans, have mainly been associated with muscle-eye-brain (MEB) disease. In addition to defects in cell-extracellular matrix adhesion, aberrant cell-cell adhesion has occasionally been observed in response to defects in POMGNT1. However, specific molecular consequences of POMGNT1 deficiency on cell-cell adhesion are largely unknown. We used POMGNT1 knockout HEK293T cells and fibroblasts from an MEB patient to gain deeper insight into the molecular changes in POMGNT1 deficiency. Biochemical and molecular biological techniques combined with proteomics, glycoproteomics, and glycomics revealed that a lack of POMGNT1 activity strengthens cell-cell adhesion. We demonstrate that the altered intrinsic adhesion properties are due to an increased abundance of N-cadherin (N-Cdh). In addition, site-specific changes in the N-glycan structures in the extracellular domain of N-Cdh were detected, which positively impact on homotypic interactions. Moreover, in POMGNT1-deficient cells, ERK1/2 and p38 signaling pathways are activated and transcriptional changes that are comparable with the epithelial-mesenchymal transition (EMT) are triggered, defining a possible molecular mechanism underlying the observed phenotype. Our study indicates that changes in cadherin-mediated cell-cell adhesion and other EMT-related processes may contribute to the complex clinical symptoms of MEB or α-dystroglycanopathy in general and suggests that the impact of changes in O-mannosylation on N-glycosylation has been underestimated.


Assuntos
Adesão Celular/fisiologia , N-Acetilglucosaminiltransferases/deficiência , N-Acetilglucosaminiltransferases/metabolismo , Antígenos CD/metabolismo , Antígenos CD/fisiologia , Caderinas/metabolismo , Caderinas/fisiologia , Adesão Celular/genética , Distroglicanas/metabolismo , Glicômica , Glicosilação , Glicosiltransferases/deficiência , Glicosiltransferases/metabolismo , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Manose/química , Distrofias Musculares/genética , N-Acetilglucosaminiltransferases/fisiologia , Polissacarídeos , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
FEBS J ; 288(16): 4869-4891, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33629527

RESUMO

Glycosylation is considered as a critical quality attribute for the production of recombinant biopharmaceuticals such as hormones, blood clotting factors, or monoclonal antibodies. In contrast, glycan patterns of immunogenic viral proteins, which differ significantly between the various expression systems, are hardly analyzed yet. The influenza A virus (IAV) proteins hemagglutinin (HA) and neuraminidase (NA) have multiple N-glycosylation sites, and alteration of N-glycan micro- and macroheterogeneity can have strong effects on virulence and immunogenicity. Here, we present a versatile and powerful glycoanalytical workflow that enables a comprehensive N-glycosylation analysis of IAV glycoproteins. We challenged our workflow with IAV (A/PR/8/34 H1N1) propagated in two closely related Madin-Darby canine kidney (MDCK) cell lines, namely an adherent MDCK cell line and its corresponding suspension cell line. As expected, N-glycan patterns of HA and NA from virus particles produced in both MDCK cell lines were similar. Detailed analysis of the HA N-glycan microheterogeneity showed an increasing variability and a higher complexity for N-glycosylation sites located closer to the head region of the molecule. In contrast, NA was found to be exclusively N-glycosylated at site N73. Almost all N-glycan structures were fucosylated. Furthermore, HA and NA N-glycan structures were exclusively hybrid- and complex-type structures, to some extent terminated with alpha-linked galactose(s) but also with blood group H type 2 and blood group A epitopes. In contrast to the similarity of the overall glycan pattern, differences in the relative abundance of individual structures were identified. This concerned, in particular, oligomannose-type, alpha-linked galactose, and multiantennary complex-type N-glycans.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/química , Células Madin Darby de Rim Canino/metabolismo , Neuraminidase/metabolismo , Animais , Cães , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/análise , Vírus da Influenza A/metabolismo , Células Madin Darby de Rim Canino/virologia , Neuraminidase/análise
10.
Appl Microbiol Biotechnol ; 105(5): 1861-1874, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33582836

RESUMO

Adaptations of animal cells to growth in suspension culture concern in particular viral vaccine production, where very specific aspects of virus-host cell interaction need to be taken into account to achieve high cell specific yields and overall process productivity. So far, the complexity of alterations on the metabolism, enzyme, and proteome level required for adaptation is only poorly understood. In this study, for the first time, we combined several complex analytical approaches with the aim to track cellular changes on different levels and to unravel interconnections and correlations. Therefore, a Madin-Darby canine kidney (MDCK) suspension cell line, adapted earlier to growth in suspension, was cultivated in a 1-L bioreactor. Cell concentrations and cell volumes, extracellular metabolite concentrations, and intracellular enzyme activities were determined. The experimental data set was used as the input for a segregated growth model that was already applied to describe the growth dynamics of the parental adherent cell line. In addition, the cellular proteome was analyzed by liquid chromatography coupled to tandem mass spectrometry using a label-free protein quantification method to unravel altered cellular processes for the suspension and the adherent cell line. Four regulatory mechanisms were identified as a response of the adaptation of adherent MDCK cells to growth in suspension. These regulatory mechanisms were linked to the proteins caveolin, cadherin-1, and pirin. Combining cell, metabolite, enzyme, and protein measurements with mathematical modeling generated a more holistic view on cellular processes involved in the adaptation of an adherent cell line to suspension growth. KEY POINTS: • Less and more efficient glucose utilization for suspension cell growth • Concerted alteration of metabolic enzyme activity and protein expression • Protein candidates to interfere glycolytic activity in MDCK cells.


Assuntos
Proteoma , Cultura de Vírus , Animais , Linhagem Celular , Proliferação de Células , Cães , Células Madin Darby de Rim Canino
12.
Electrophoresis ; 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33165939

RESUMO

The association of immunoglobulin G (IgG) glycosylation changes with various human diseases and physiological conditions is well established. Since the mechanistical explanation of the regulation of IgG glycosylation and its functional role in these various states is still missing, the eyes of the biomedical community are now turned towards animal models, which enable intervention studies necessary for conclusions on causality. Mice are recognized and used as a good experimental model for human IgG glycosylation. However, smaller blood volumes, low IgG concentrations at young ages (which are most often used in mice experiments) and multiple sampling protocols during the course of longitudinal studies would profit from a robust workflow for mouse IgG glycome analysis from minute amounts of starting material, collected through a simple sampling procedure. For this purpose, we have developed a protocol for analysis of total N-glycans of IgG isolated from mouse dried blood spots (DBS), which we report here. We show that mouse DBS are a good source of material for IgG N-glycan analysis by multiplexed capillary gel electrophoresis with laser-induced fluorescence (xCGE-LIF).

13.
Artigo em Inglês | MEDLINE | ID: mdl-33205259

RESUMO

Glycosylation is a key factor determining the pharmacological properties of biotherapeutics, including their stability, solubility, bioavailability, pharmacokinetics, and immunogenicity. As such, comprehensive information about glycosylation of biotherapeutics is critical to demonstrate similarity. Regulatory agencies also require extensive documentation of the comprehensive analyses of glycosylation-related critical quality attributes (CQAs) during the development, manufacturing, and release of biosimilars. Mass spectrometry has catalysed tremendous advancements in the characterisation of glycosylation CQAs of biotherapeutics. Here we provide a perspective overview on the MS-based technologies relevant for biotherapeutic product characterisation with an emphasis on the recent developments that allow determination of glycosylation features such as site of glycosylation, sialic acid linkage, glycan structure, and content.

14.
Artigo em Inglês | MEDLINE | ID: mdl-33112988

RESUMO

Glycosylation affects the properties of biologics; thus regulatory bodies classified it as critical quality attribute and force biopharma industry to capture and control it throughout all phases, from R&D till end of product lifetime. The shift from originators to biosimilars further increases importance and extent of glycoanalysis, which thus increases the need for technology platforms enabling reliable high-throughput and in-depth glycan analysis. In this chapter, we will first summarize on established glycoanalytical methods based on liquid chromatography focusing on hydrophilic interaction chromatography, capillary electrophoresis focusing on multiplexed capillary gel electrophoresis, and mass spectrometry focusing on matrix-assisted laser desorption; we will then highlight two emerging technologies based on porous graphitized carbon liquid chromatography and on ion-mobility mass spectrometry as both are highly promising tools to deliver an additional level of information for in-depth glycan analysis; additionally we elaborate on the advantages and challenges of different glycoanalytical technologies and their complementarity; finally, we briefly review applications thereof to biopharmaceutical products. This chapter provides an overview of current state-of-the-art analytical approaches for glycan characterization of biopharmaceuticals that can be employed to capture glycoprotein heterogeneity in a biopharmaceutical context.

15.
Artigo em Inglês | MEDLINE | ID: mdl-33052414

RESUMO

Glycoconjugates have great potential to improve human health in a multitude of different ways and fields. Prominent examples are human milk oligosaccharides and glycosaminoglycans. The typical choice for the production of homogeneous glycoconjugates is enzymatic synthesis. Through the availability of expression and purification protocols, recombinant Leloir glycosyltransferases are widely applied as catalysts for the synthesis of a wide range of glycoconjugates. Extensive utilization of these enzymes also depends on the availability of activated sugars as building blocks. Multi-enzyme cascades have proven a versatile technique to synthesize and in situ regenerate nucleotide sugar.In this chapter, the functions and mechanisms of Leloir glycosyltransferases are revisited, and the advantage of prokaryotic sources and production systems is discussed. Moreover, in vivo and in vitro pathways for the synthesis of nucleotide sugar are reviewed. In the second part, recent and prominent examples of the application of Leloir glycosyltransferase are given, i.e., the synthesis of glycosaminoglycans, glycoconjugate vaccines, and human milk oligosaccharides as well as the re-glycosylation of biopharmaceuticals, and the status of automated glycan assembly is revisited.

16.
J Biotechnol ; 322: 54-65, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32653637

RESUMO

A wide range of glycoproteins can be recombinantly expressed in aglycosylated forms in bacterial and cell-free production systems. To investigate the effect of glycosylation of these proteins on receptor binding, stability, efficacy as drugs, pharmacodynamics and pharmacokinetics, an efficient glycosylation platform is required. Here, we present a cell-free synthetic platform for the in vitro N-glycosylation of peptides mimicking the endoplasmic reticulum (ER) glycosylation machinery of eukaryotes. The one-pot, two compartment multi-enzyme cascade consisting of eight recombinant enzymes including the three Leloir glycosyltransferases, Alg1, Alg2 and Alg11, expressed in E. coli and S. cerevisiae, respectively, has been engineered to produce the core lipid-linked (LL) oligosaccharide mannopentaose-di-(N-acetylglucosamine) (LL-Man5). Pythanol (C20H42O), a readily available alcohol consisting of regular isoprenoid units, was utilized as the lipid anchor. As part of the cascade, GDP-mannose was de novo produced from the inexpensive substrates ADP, polyphosphate and mannose. To prevent enzyme inhibition, the nucleotide sugar cascade and the glycosyltransferase were segregated into two compartments by a cellulose ester membrane with 3.5 kDa cut-off allowing for the effective diffusion of GDP-mannose across compartments. Finally, as a proof-of-principle, pythanyl-linked Man5 and the single-subunit oligosaccharyltransferase Trypanosoma brucei STT3A expressed in Sf9 insect cells were used to in vitro N-glycosylate a synthetic peptide of ten amino acids bearing the eukaryotic consensus motif N-X-S/T.


Assuntos
Enzimas , Glicopeptídeos , Lipopolissacarídeos/metabolismo , Biologia Sintética/métodos , Animais , Biocatálise , Sistema Livre de Células/enzimologia , Sistema Livre de Células/metabolismo , Dissacarídeos/química , Dissacarídeos/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Enzimas/genética , Enzimas/metabolismo , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Glicosilação , Lipopolissacarídeos/química , Células Sf9
17.
Glycobiology ; 30(9): 679-694, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32149347

RESUMO

Protein glycosylation impacts the development and function of innate immune cells. The glycophenotypes and the glycan remodelling associated with the maturation of macrophages from monocytic precursor populations remain incompletely described. Herein, label-free porous graphitised carbon-liquid chromatography-tandem mass spectrometry (PGC-LC-MS/MS) was employed to profile with high resolution the N- and O-glycome associated with human monocyte-to-macrophage transition. Primary blood-derived CD14+ monocytes were differentiated ex vivo in the absence of strong anti- and proinflammatory stimuli using a conventional 7-day granulocyte-macrophage colony-stimulating factor differentiation protocol with longitudinal sampling. Morphology and protein expression monitored by light microscopy and proteomics validated the maturation process. Glycomics demonstrated that monocytes and macrophages display similar N-glycome profiles, comprising predominantly paucimannosidic (Man1-3GlcNAc2Fuc0-1, 22.1-30.8%), oligomannosidic (Man5-9GlcNAc2, 29.8-35.7%) and α2,3/6-sialylated complex-type N-glycans with variable core fucosylation (27.6-39.1%). Glycopeptide analysis validated conjugation of these glycans to human proteins, while quantitative proteomics monitored the glycoenzyme expression levels during macrophage differentiation. Significant interperson glycome variations were observed suggesting a considerable physiology-dependent or heritable heterogeneity of CD14+ monocytes. Only few N-glycome changes correlated with the monocyte-to-macrophage transition across donors including decreased core fucosylation and reduced expression of mannose-terminating (paucimannosidic-/oligomannosidic-type) N-glycans in macrophages, while lectin flow cytometry indicated that more dramatic cell surface glycan remodelling occurs during maturation. The less heterogeneous core 1-rich O-glycome showed a minor decrease in core 2-type O-glycosylation but otherwise remained unchanged with macrophage maturation. This high-resolution glycome map underpinning normal monocyte-to-macrophage transition, the most detailed to date, aids our understanding of the molecular makeup pertaining to two vital innate immune cell types and forms an important reference for future glycoimmunological studies.

18.
Mol Cell Proteomics ; 19(1): 11-30, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31591262

RESUMO

Glycosylation is a topic of intense current interest in the development of biopharmaceuticals because it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy-six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submitted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide community-derived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods.


Assuntos
Anticorpos Monoclonais/química , Produtos Biológicos , Biofarmácia/métodos , Anticorpos Monoclonais/metabolismo , Glicômica/métodos , Glicopeptídeos/metabolismo , Glicosilação , Humanos , Laboratórios , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos
19.
Nat Commun ; 10(1): 4816, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645552

RESUMO

Sialic acids are a family of related sugars that play essential roles in many biological events intimately linked to cellular recognition in both health and disease. Sialidases are therefore orchestrators of cellular biology and important therapeutic targets for viral infection. Here, we sought to define if uncharacterized sialidases would provide distinct paradigms in sialic acid biochemistry. We show that a recently discovered sialidase family, whose first member EnvSia156 was isolated from hot spring metagenomes, defines an unusual structural fold and active centre constellation, not previously described in sialidases. Consistent with an inverting mechanism, EnvSia156 reveals a His/Asp active center in which the His acts as a Brønsted acid and Asp as a Brønsted base in a single-displacement mechanism. A predominantly hydrophobic aglycone site facilitates accommodation of a variety of 2-linked sialosides; a versatility that offers the potential for glycan hydrolysis across a range of biological and technological platforms.


Assuntos
Domínio Catalítico , Neuraminidase/metabolismo , Ácidos Siálicos/metabolismo , Cristalografia por Raios X , Glicocálix/metabolismo , Neuraminidase/ultraestrutura , Estrutura Terciária de Proteína
20.
Molecules ; 24(19)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557948

RESUMO

Several health benefits, associated with human milk oligosaccharides (HMOS), have been revealed in the last decades. Further progress, however, requires not only the establishment of a simple "routine" method for absolute quantification of complex HMOS mixtures but also the development of novel synthesis strategies to improve access to tailored HMOS. Here, we introduce a combination of salvage-like nucleotide sugar-producing enzyme cascades with Leloir-glycosyltransferases in a sequential pattern for the convenient tailoring of stable isotope-labeled HMOS. We demonstrate the assembly of [13C6]galactose into lacto-N- and lacto-N-neo-type HMOS structures up to octaoses. Further, we present the enzymatic production of UDP-[15N]GlcNAc and its application for the enzymatic synthesis of [13C6/15N]lacto-N-neo-tetraose for the first time. An exemplary application was selected-analysis of tetraose in complex biological mixtures-to show the potential of tailored stable isotope reference standards for the mass spectrometry-based quantification, using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) as a fast and straightforward method for absolute quantification of HMOS. Together with the newly available well-defined tailored isotopic HMOS, this can make a crucial contribution to prospective research aiming for a more profound understanding of HMOS structure-function relations.


Assuntos
Leite Humano/química , Oligossacarídeos/química , Isótopos de Carbono/química , Catálise , Glicosiltransferases/química , Humanos , Isótopos de Nitrogênio/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Nucleotídeos de Uracila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...