RESUMO
Among the wheat biotic stresses, Sitobion avenae is one of the main factors devastating the wheat yield per hectare. The study's objective was to find out the laccase (lac) efficacy; as a potential RNAi target against grain aphids. The Sitobion avenae lac (Salac) was confirmed by Reverse Transcriptase-PCR. Gene was sequenced and accession number "ON703252" was allotted by GenBank. ERNAi tool was used to design 143 siRNA and one dsRNA target. 69% mortality and 61% reduction in lac expression were observed 8D-post lac DsRNA feeding. Phylogenetic analysis displayed the homology of grain aphid lac gene with peach potato, pea, and Russian wheat aphids. While Salac protein was found similar to the Russian grain, soybean, pea, and cedar bark aphid lac protein multi-copper oxidase. The dsRNAlac spray-induced silencing shows systematic translocation from leaf to root; with maximum lac expression found in the root, followed by stem and leaf 9-13D post-spray; comparison to control. RNAi-GG provides the Golden Gate cloning strategy with a single restriction ligation reaction used to achieve lac silencing. Agrobacterium tumefaciens mediated in planta and in-vitro transformation was used in the study. In vitro transformation, Galaxy 2012 yielded a maximum transformation efficiency (1.5%), followed by Anaj 2017 (0.8%), and Punjab (0.2%). In planta transformation provides better transformation efficiencies with a maximum in Galaxy 2012 (16%), and a minimum for Punjab (5%). Maximum transformation efficiency was achieved for all cultivars with 250 µM acetosyringone and 3h co-cultivation. Galaxy 2012 exhibited maximum transformation efficiency, and aphid mortality post-feeding transgenic wheat.
Assuntos
Afídeos , Lacase , Animais , Interferência de RNA , Lacase/genética , Afídeos/genética , Triticum/genética , Filogenia , RNA de Cadeia Dupla/genéticaRESUMO
Carbon-based polynuclear clusters are designed and investigated for geometric, electronic, and nonlinear optical (NLO) properties at the CAM-B3LYP/6-311++G(d,p) level of theory. Significant binding energies per atom (ranging from -162.4 to -160.0 kcal mol-1) indicate excellent thermodynamic stabilities of these polynuclear clusters. The frontier molecular orbital (FMOs) analysis indicates excess electron nature of the clusters with low ionization potential, suggesting that they are alkali-like. The decreased energy gaps (EH-L) with increased alkali metals size revael the improved electrical conductivity (σ). The total density of state (TDOS) study reveals the alkali metals' size-dependent electronic and conductive properties. The significant first and second hyperpolarizabilities are observed up to 5.78 × 103 and 5.55 × 106 au, respectively. The ßo response shows dependence on the size of alkali metals. Furthermore, the absorption study shows transparency of these clusters in the deep-UV, and absorptions are observed at longer wavelengths (redshifted). The optical gaps from TD-DFT are considerably smaller than those of HOMO-LUMO gaps. The significant scattering hyperpolarizability (ßHRS) value (1.62 × 104) is calculated for the C3 cluster, where octupolar contribution to ßHRS is 92%. The dynamic first hyperpolarizability ß(ω) is more pronounced for the EOPE effect at 532 nm, whereas SHG has notable values for second hyperpolarizability γ(ω).
Assuntos
Carbono , Eletrônica , Modelos Moleculares , Conformação Molecular , TermodinâmicaRESUMO
Diabetes mellitus (DM) is a metabolic disorder majorly arising from the pathophysiology of the pancreas manifested as a decline in the insulin production or the tissue's resistance to the insulin. In this research, we have rationally designed and synthesized new succinimide-thiazolidinedione hybrids for the management of DM. In a multistep reaction, we were able to synthesize five new derivatives (10a-e). All the compounds were new containing a different substitution pattern on the N-atom of the succinimide ring. Initially, all the compounds were tested against the in vitro α-glucosidase, α-amylase, PTP1B, and DPP4 targets. In all of these targets, the compound 10d was observed to be the most potential antidiabetic agent. Based on this, the antidiabetic activity of the compound 10d was further investigated in experimental animals, which overall gave us encouraging results. The molecular docking studies of the compound 10d was also performed against the target enzymes α-glucosidase, α-amylase, PTP1B, and DPP4 using MOE. Overall, we observed that we have explored a new class of compounds as potential antidiabetic agents.
Assuntos
Diabetes Mellitus , Tiazolidinedionas , Animais , Hipoglicemiantes , alfa-Glucosidases/metabolismo , Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , Dipeptidil Peptidase 4 , Diabetes Mellitus/tratamento farmacológico , Insulina , Succinimidas , alfa-Amilases/metabolismoRESUMO
Nowadays, exponential growth in online production and extensive perceptual power of visual contents (i.e., images) complicate the users' information needs. The research has shown that users are interested in satisfying their visual information needs by accessing the image objects. However, the exploration of images via existing search engines is challenging. Mainly, existing search engines employ linear lists or grid layouts, sorted in descending order of relevancy to the user's query to present the image results, which hinders image exploration via multiple information modalities associated with them. Furthermore, results at lower-ranking positions are cumbersome to reach. This research proposed a Search User Interface (SUI) approach to instantiate the non-linear reachability of the image results by enabling interactive exploration and visualization options. We represent the results in a cluster-graph data model, where the nodes represent images and the edges are multimodal similarity relationships. The results in clusters are reachable via multimodal similarity relationships. We instantiated the proposed approach over a real dataset of images and evaluated it via multiple types of usability tests and behavioral analysis techniques. The usability testing reveals good satisfaction (76.83%) and usability (83.73%) scores.
Assuntos
Ferramenta de Busca , Interface Usuário-Computador , Design Centrado no Usuário , Sistemas Computacionais , RegistrosRESUMO
Alzheimer's disease (AD) is a complex, multifactorial and most prevalent progressive neurodegenerative ailment. Its multifactorial and complex nature causes the lack of disease modifying drugs. Hence, multi-target drug design strategies have been adopted to halt the progression of AD. In current research, we applied multitarget strategy to tackle multifactorial nature of AD. Rational design and synthesis of framework of hybrids containing Pyrimidine/pyrrolidine-sertraline scaffolds were carried out. The synthesized compounds were further evaluated for their in-vitro enzyme inhibition potential against cholinesterases, monoamine oxidases and ß-site amyloid precursor protein cleaving enzyme-1 (BACE-1). Compound 19 emerged as an optimal multipotent hybrid with IC50 values of 0.07 µM, 0.09 µM, 0.63 µM, 0.21 µM and 0.73 µM against AChE, BChE, MAO-A, MAO-B and BACE-1 respectively. After in-vivo cytotoxicity and in-vitro PAMPA blood brain barrier permeation assays, a number of widely used behavioral assessment tests were also performed for the evaluation of memory and learning.Determination of biochemical parameters showed low levels of acetylcholinesterase by the treatment with synthesized compounds. Furthermore, levels of neurotransmitters such as serotonin, dopamine and noradrenaline were also analyzed. Increased neurotransmitter levels showed the improved short and long-term memory as well as enhanced learning behavior. Docking studies on the target enzymes showed correlation with the experimental in-vitro enzyme inhibition results.
Assuntos
Acetilcolinesterase , Doença de Alzheimer , Humanos , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Sertralina/uso terapêutico , Relação Estrutura-AtividadeRESUMO
Plants' bioactives are well-known safe drugs for vital diseases. Flavones and Flavonoid-rich dietary supplements are known to exhibit neuroprotective potential. In this study, we isolated a flavone 2-(3,4-dimethoxyphenyl)-3,7-dihydroxy-4H-chromen-4-one from Notholirion thomsonianum and it was evaluated against various targets of the oxidative stress-related neurological disorders. The compound showed excellent acetyl and butyrylcholinesterase inhibitions in its profile, giving IC50 values of 1.37 and 0.95 µM, respectively. Similarly, in in-vitro MAO-B assay, our flavone exhibited an IC50 value of 0.14 µM in comparison to the standard safinamide (IC50 0.025 µM). In in-vitro anti-inflammatory assay, our isolated compound exhibited IC50 values of 7.09, 0.38 and 0.84 µM against COX-1, COX-2 and 5-LOX, respectively. The COX-2 selectivity (SI) of the compound was 18.70. The compound was found safe in animals and was very effective in carrageenan-induced inflammation. Due to the polar groups in the structure, a very excellent antioxidant profile was observed in both in-vitro and in-vivo models. The compound was docked into the target proteins of the respective activities and the binding energies confirmed the potency of our compound. Furthermore, absorption, distribution, metabolism, excretion, and toxicity (ADMET) results showed that the isolated flavone has a good GIT absorption ability and comes with no hepatic and cardiotoxicity. In addition, the skin sensitization test, in-vitro human cell line activation test (h-CLAT) and KeratinoSens have revealed that isolated flavone is not skin sensitive with a confidence score of 59.6% and 91.6%. Herein, we have isolated a natural flavone with an effective profile against Alzheimer's, inflammation and oxidative stress. The exploration of this natural flavone will provide a baseline for future research in the field of drug development.
RESUMO
Cardiac and hepatotoxicities are major concerns in the development of new drugs. Better alternatives to other treatments are being sought to protect these vital organs from the toxicities of these pharmaceuticals. In this regard, a preclinical study is designed to investigate the histopathological effects of a new succinimide derivative (Comp-1) on myocardial and liver tissues, and the biochemical effects on selected cardiac biomarkers, hepatic enzymes, and lipid profiles. For this, an initially lethal/toxic dose was determined, followed by a grouping of selected albino rats into five groups (each group had n = 6). The control group received daily oral saline for 8 days. The 5-FU (5-Fluorouracil) group received oral saline daily for 8 days, added with the administration of a single dose of 5-FU (150 mg/kg I.P.) on day 5 of the study. The atenolol group received oral atenolol (20 mg/kg) for 8 days and 5-FU (150 mg/kg I.P.) on day 5 of the protocol. Similarly, two groups of rats treated with test compound (Comp-1) were administered with 5 mg/kg I.P. and 10 mg/kg I.P. for 8 days, followed by 5-FU (150 mg/kg I.P.) on day 5. Toxicity induced by 5-FU was manifested by increases in the serum creatinine kinase myocardial band (CK-MB), troponin I (cTnI) and lactate dehydrogenase (LDH), lipid profile, and selected liver enzymes, including ALP (alkaline phosphatase), ALT (alanine transaminase), AST (aspartate aminotransferase), BT (bilirubin total), and BD (direct bilirubin). These biomarkers were highly significantly decreased after the administration of the mentioned doses of the test compound (5 mg/kg and 10 mg/kg). Similarly, histological examination revealed cardiac and hepatic tissue toxicity by 5-FU. However, those toxic effects were also significantly recovered/improved after the administration of Comp-1 at the said doses. This derivative showed dose-dependent effects and was most effective at a dose of 10 mg/kg body weight. Binding energy data computed via docking simulations revealed that our compound interacts toward the human beta2-adrenergic G protein-coupled receptor (S = -7.89 kcal/mol) with a slight stronger affinity than the calcium channel T-type (S = -7.07 kcal/mol). In conclusion, the histological and biochemical results showed that the test compound (Comp-1) had prominent cardioprotective, hepatoprotective, and lipolytic effects against 5-FU-induced toxicity in the subjected animal model.
Assuntos
Fosfatase Alcalina , Troponina I , Adrenérgicos/metabolismo , Adrenérgicos/farmacologia , Alanina Transaminase , Fosfatase Alcalina/metabolismo , Animais , Aspartato Aminotransferases , Atenolol , Bilirrubina/metabolismo , Biomarcadores/metabolismo , Canais de Cálcio/metabolismo , Creatinina/metabolismo , Fluoruracila/farmacologia , Humanos , Lactato Desidrogenases/metabolismo , Lipídeos/farmacologia , Fígado , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Succinimidas/metabolismo , Troponina I/metabolismoRESUMO
The by-product of the previous transesterification, glycerol was utilised as an acid catalyst precursor for biodiesel production. The crude glycerol was treated through the sulfonation method with sulfuric acid and chlorosulfonic acid in a reflux batch reactor giving solid glycerol-SO3H and glycerol-ClSO3H, respectively. The synthesised acidic glycerol catalysts were characterised by various analytical techniques such as thermalgravimetric analyser (TGA), infrared spectroscopy, surface properties adsorption-desorption by nitrogen gas, ammonia-temperature programmed desorption (NH3-TPD), X-ray diffraction spectroscopy (XRD), elemental composition analysis by energy dispersive spectrometer (EDX) and surface micrographic morphologies by field emission electron microscope (FESEM). Both glycerol-SO3H and glycerol-ClSO3H samples exhibited mesoporous structures with a low surface area of 8.85 mm2/g and 4.71 mm2/g, respectively, supported by the microscopic image of blockage pores. However, the acidity strength for both catalysts was recorded at 3.43 mmol/g and 3.96 mmol/g, which is sufficient for catalysing PFAD biodiesel at the highest yield. The catalytic esterification was optimised at 96.7% and 98.2% with 3 wt.% of catalyst loading, 18:1 of methanol-PFAD molar ratio, 120 °C, and 4 h of reaction. Catalyst reusability was sustained up to 3 reaction cycles due to catalyst deactivation, and the insight investigation of spent catalysts was also performed.
Assuntos
Biocombustíveis , Glicerol , Esterificação , Metanol , Amônia , Óleos de Plantas/química , Catálise , Ácidos Graxos , NitrogênioRESUMO
In the era of acquired microbial resistance (AMR), resulting in the ineffectiveness of antibiotics is of keen interest for researchers in current scenarios. Ten novel metal complexes of gemifloxacin have been synthesized by reacting it with essential and trace elements in a 2:1 ratio predetermined conducto-metrically. As these metals are either present in the body or co-administered as metallic supplements can alter the level of antibiotics. Therefore, Metal complexes of Gemifloxacin, an important member of the fluoroquinolone family, were synthesized. The possible coordination of gemifloxacin with these metals has been proposed by the electronic and elemental data obtained through molar conductance, elemental analysis, and spectroscopic techniques like ultraviolet-visible (UV-Vis), infrared (IR), and proton-nuclear magnetic resonance (1H NMR) studies. In the light of these studies, the monoanionic bidentate ligand behavior of gemifloxacin in complexation with metals has been revealed. For in-vitro microbial studies, these newly synthesized complexes were tested against eleven different bacteria including Gram + ve and Gram -ve organisms, and one fungal strain. The results were compared with the parent drug by applying ANOVA through SPSS software version 22. Therefore, it has been found that among all synthesized metal complexes, the G-M01 complex exhibits increased activity against B. subtilis, P. mirabilis, E. coli, K. pneumonia, and C. freundii. Complex G-M02, G-M03, G-M04, and G-M10 show more pronounced activity than Gemifloxacin against S. aureus and M. luteus. Moreover, the binding orientations of the synthesized metal complexes into the binding site of the urease enzyme revealed that all the docked metal complexes oriented away from the Ni bi-center, and the inactivation of urease is due to their interaction with entrance flap residues.
RESUMO
The galls of Pistacia integerrima are used in folk medicine for curing diabetes. The main aim of this study was the purification of flavonoids from galls of P. integerrima. The methanolic extract was subjected to column chromatographic analysis which afforded six flavonoids, namely, 3,5,7,4'-tetrahydroxy-flavanone (1), naringenin (2), 3,5,4'-trihydroxy,7-methoxy-flavanone (3), sakuranetin (4), spinacetin (5), and patuletin (6). These isolated compounds (1-6) were tested against α-glycosidase. The maximum antagonistic effect was noted against compound 6 (97.65%) followed by compound 5 (90.42%) and compound 1 (90.01%) at the same concentration (0.2 µg). The inhibitory potential of all tested compounds was significant with a degree of variation from each other. Docking studies showed that all studied compounds interact with the active site residues via hydrogen bond interactions with hydroxyl groups, and thus, inhibition was enhanced. Hence, this finding would be the first screening of isolated flavonoids for α-glycosidase activity and with the mechanism of action. These flavonoids should be further investigated as candidate drugs for combating diabetes mellitus.
Assuntos
Flavanonas , Pistacia , Flavanonas/química , Flavanonas/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Glicosídeo Hidrolases , Pistacia/química , Extratos Vegetais/química , Extratos Vegetais/farmacologiaRESUMO
Targeting concomitantly cholinesterase (ChEs) and monoamine oxidases (MAO-A and MAO-B) is a key strategy to treat multifactorial Alzheimer's disease (AD). Moreover, it is reported that the expression of cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) is increased significantly in the brain of AD patients. Using the triazole of diclofenac 12 as a lead compound, we synthesized a variety of analogs as multipotent inhibitors concomitantly targeting COX-2, 5-LOX, AChE, BChE, MAO-A and MAO-B. A number of compounds showed excellent in vitro inhibition of the target biological macromolecules in nanomolar concentration. Compound 39 emerged as the most potent multitarget ligand with IC50 values of 0.03 µM, 0.91 µM, 0.61 µM, 0.01 µM 0.60 µM and 0.98 µM towards AChE, BChE, MAO-A, MAO-B, COX-2 and 5-LOX respectively. All the biologically active compounds were found to be non-neurotoxic and blood-brain barrier penetrant by using PAMPA assay. In a reversibility assay, all the studied active compounds showed reversibility and thus were found to be devoid of side effects. MTT assay results on neuroblastoma SH-SY5Y cells showed that the tested compounds were non-neurotoxic. An in vivo acute toxicity study showed the safety of the synthesized compounds up to a 2000 mg kg-1 dose. In docking studies three-dimensional construction and interaction with key residues of all the studied biological macromolecules helped us to explain the experimental results.
RESUMO
Neurodegenerative ailments are a diverse set of syndromes distinguished by gradual deterioration of the structure as well as functions of the central nervous system or peripheral nervous system. Alzheimer's disease (AD) and Parkinson's disease (PD) have no cure, common, and are high prevalent neurodegenerative pathologies. In current research, rationally designed thiazolidine-2,4-dione based analogs were synthesized and tested for their inhibition potential against two isoforms of monoamine oxidase (MAO-A / MAO-B). Structure activity relationships were explored. Pyridinyl and thiazolyl hydrazone derivative 43 and 44 with IC50 value of 0.013 µM and 0.008 µM (selectivity 228 / 226 times) exhibited higher potency than reference drug safinamide. Most active compounds showed BBB penetration in PAMPA in-vitro assay. Except nitro derivative 41, all compounds were non-neurotoxic in the studied concentration. Molecular docking studies supported the in-vitro experimental results and the selectivity by comparing the binding energy values against both MAO-A and MAO-B isoforms. All the results of current research suggest compounds 43 and 44 may serve as promising candidates for further research for treatment of neurodegenerative diseases.
Assuntos
Inibidores da Monoaminoxidase , Monoaminoxidase , Inibidores da Monoaminoxidase/química , Simulação de Acoplamento Molecular , Tiazolidinas , Monoaminoxidase/metabolismo , Relação Estrutura-Atividade , Hidrazonas/farmacologia , Estrutura MolecularRESUMO
Modulation of the endocannabinoid system (ECS) is a novel putative target for therapeutic intervention in depressive disorders. Altering concentrations of one of the principal endocannabinoids, N-arachidonoylethanolamine, also known as anandamide (AEA) can affect depressive-like behaviors through several mechanisms including anti-inflammatory, hormonal, and neural circuit alterations. Recently, isoflavonoids, a class of plant-derived compounds, have been of therapeutic interest given their ability to modulate the metabolism of the endogenous ligands of the ECS. To determine the therapeutic potential of isoflavonoids, we screened several candidate compounds (Genistein, Biochanin-A, and 7-hydroxyflavone) in silico to determine their binding properties with fatty acid amide hydrolase (FAAH), the primary degrative enzyme for AEA. We further validated the ability of these compounds to inhibit FAAH and determined their effects on depressive-like and locomotor behaviors in the forced swim test (FST) and open field test in male and female mice. We found that while genistein was the most potent FAAH inhibitor, 7-hydroxyflavone was most effective at reducing immobility time in the forced swim test. Finally, we measured blood corticosterone and prefrontal cortex AEA concentrations following the forced swim test and found that all tested compounds decreased corticosterone and increased AEA, demonstrating that isoflavonoids are promising therapeutic targets as FAAH inhibitors.
Assuntos
Endocanabinoides , Genisteína , Amidoidrolases , Animais , Antidepressivos , Ácidos Araquidônicos , Corticosterona , Camundongos , Alcamidas Poli-InsaturadasRESUMO
This study examined the efficiency of fungal strain (Cunninghamella bertholletiae) isolated from the rhizosphere of Solanum lycopersicum to reduce symptoms of salinity, drought and heavy metal stresses in tomato plants. In vitro evaluation of C. bertholletiae demonstrated its ability to produce indole-3-Acetic Acid (IAA), ammonia and tolerate varied abiotic stresses on solid media. Tomato plants at 33 days' old, inoculated with or without C. bertholletiae, were treated with 1.5% sodium chloride, 25% polyethylene glycol, 3 mM cadmium and 3 mM lead for 10 days, and the impact of C. bertholletiae on plant performance was investigated. Inoculation with C. bertholletiae enhanced plant biomass and growth attributes in stressed plants. In addition, C. bertholletiae modulated the physiochemical apparatus of stressed plants by raising chlorophyll, carotenoid, glucose, fructose, and sucrose contents, and reducing hydrogen peroxide, protein, lipid metabolism, amino acid, antioxidant activities, and abscisic acid. Gene expression analysis showed enhanced expression of SlCDF3 and SlICS genes and reduced expression of SlACCase, SlAOS, SlGRAS6, SlRBOHD, SlRING1, SlTAF1, and SlZH13 genes following C. bertholletiae application. In conclusion, our study supports the potential of C. bertholletiae as a biofertilizer to reduce plant damage, improve crop endurance and remediation under stress conditions.
Assuntos
Cunninghamella , Solanum lycopersicum , Solanum lycopersicum/genética , Rizosfera , Estresse Fisiológico/genéticaRESUMO
Fungal strains isolated from the rhizosphere of healthy Solanum lycopersicum were examined to mitigate symptoms of drought and salinity stresses. The fungal strains were identified as Actinomucor elegans and Podospora bulbillosa based on their DNA sequencing and morphological analysis. Additionally, the fungal strains were assayed for a number of plant growth promoting traits and abiotic stresses on solid media. Moreover, a greenhouse experiment was conducted and tomato seedlings were treated with 25% PEG or 1.5% NaCl for 12 days, and the impact of plant growth promoting fungi (PGPF) on tomato seedling performance under these conditions was examined. PGPF application raised the survival of the stressed tomato plants, which was evidenced by higher physiological and biochemical processes. The PGPF-inoculated plants exhibited higher chlorophyll, carotenoid, protein, amino acid, antioxidant activities, salicylic acid, glucose, fructose, and sucrose contents, and showed lower hydrogen peroxide, and lipid metabolism relative to control plants under stress. Analysis using gene expression showed enhanced expression of SlF3H gene and reduced expression of SlNCED1, SlDEAD31, SlbZIP38, and SlGRAS10 genes following PGPFs application. Overall, the outcomes of this study elucidate the function of these fungal strains and present candidates with potential implementation as biofertilizers and in promoting plant stress endurance.
RESUMO
Alzheimer's disease is the most common progressive neurodegenerative mental disorder associated with loss of memory, decline in cognitive function, and dysfunction of language. The prominent pathogenic causes of this disease involve deposition of amyloid-ß plaques, acetylcholine neurotransmitter deficiency, and accumulation of neurofibrillary tangles. There are multiple pathways that have been targeted to treat this disease. The inhibition of the intracellular cyclic AMP regulator phosphodiesterase IV causes the increase in CAMP levels that play an important role in the memory formation process. Organometallic chemistry works in a different way in treating pharmacological disorders. In the field of medicinal chemistry and pharmaceuticals, zinc-based amide carboxylates have been shown to be a preferred pharmacophore. The purpose of this research work was to investigate the potential of zinc amide carboxylates in inhibition of phosphodiesterase IV for the Alzheimer's disease management. Swiss Albino mice under controlled conditions were divided into seven groups with 10 mice each. Group I was injected with carboxymethylcellulose (CMC) at 1 mL/100 g dose, group II was injected with Streptozotocin (STZ) at 3 mg/kg dose, group III was injected with Piracetam acting as a standard drug at 200 mg/kg dosage, while groups IV-VII were injected with a zinc scaffold at the dose regimen of 10, 20, 40, and 80 mg/kg through intraperitoneal injection. All groups except group I were injected with Streptozotocin on the first day and third day of treatment at the dose of 3 mg/kg through an intracerebroventricular route to induce Alzheimer's disease. Afterward, respective treatment was continued for all groups for 23 days. In between the treatment regimen, groups were analyzed for memory and learning improvement through various behavioral tests such as open field, elevated plus maze, Morris water maze, and passive avoidance tests. At the end of the study, different biochemical markers in the brain were estimated like neurotransmitters (dopamine, serotonin and adrenaline), oxidative stress markers (superoxide dismutase, glutathione, and catalase), acetylcholinesterase (AchE), tau proteins, and amyloid-ß levels. A PCR study was also performed. Results showed that the LD50 of the zinc scaffold is greater than 2000 mg/kg. Research indicated that the zinc scaffold has the potential to improve the memory impairment and learning behavior in Alzheimer's disease animal models in a dose-dependent manner. At the dose of 80 mg/kg, a maximum response was observed for the zinc scaffold. Maximum reduction in the acetylcholinesterase enzyme was observed at 80 mg/kg dose, which was further strengthened and verified by the PCR study. Oxidative stress was restored by the zinc scaffold due to the significant activation of the endogenous antioxidant enzymes. This research ended up with the conclusion that the zinc-based amide carboxylate scaffold has the potential to improve behavioral disturbances and vary the biochemical markers in the brain.
RESUMO
In the current study, a series of new (2S,3S)-2-(4-isopropylbenzyl)-2-methyl-4-nitro-3-phenylbutanals (FM1-6) with their corresponding carboxylic acid analogues (FM7-12) has been synthesized. Initially, the aldehydic derivatives were isolated in the diastereomeric form, and the structures were confirmed with NMR, MS and elemental analysis. Based on the encouraging results in in vitro COX 1/2, 5-LOX and antioxidant assays, we oxidized the compounds and obtained the pure single (major) diastereomer for activities. Among all the compounds, FM4, FM10 and FM12 were the leading compounds based on their potent IC50 values. The IC50 values of compounds FM4, FM10 and FM12 were 0.74, 0.69 and 0.18 µM, respectively, in COX-2 assay. Similarly, the IC50 values of these three compounds were also dominant in COX-1 assay. In 5-LOX assay, the majority of our compounds were potent inhibitors of the enzyme. Based on the potency and safety profiles, FM10 and FM12 were subjected to the in vivo experiments. The compounds FM10 and FM12 were observed with encouraging results in in vivo analgesic and anti-inflammatory models. The molecular docking studies of the selected compounds show binding interactions in the minimized pocked of the target proteins. It is obvious from the overall results that FM10 and FM12 are potent analgesic and anti-inflammatory agents.
Assuntos
Antioxidantes , Ácidos Carboxílicos , Aldeídos , Analgésicos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ácidos Carboxílicos/farmacologia , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Edema/induzido quimicamente , Edema/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
In this research work, a simple, efficient, and eco-friendly procedure for the biosorption of Cr(VI) ions was studied. A detailed comparative study was performed to check the adsorption efficiency of agrowaste (banana and potato peels)-based adsorbents. Firstly, mixed biosorbent was washed, dried and ground into powder, secondly, biosorbent was pyrolyzed into biochar and thirdly TiO2 nanocomposite (TiO2 NC) biosorbent was made by sonicating using prepared biochar and TiO2 NPs. Titanium dioxide nanoparticles (TiO2 NPs) were synthesized by a green method using Psidium guajava leaf extract. The synthesized adsorbents were characterized by SEM, EDX FT-IR, XRD and UV-visible analysis. The effect of four different factors, i.e., pH of the synthetic metallic solution, time, concentration and adsorbent dosage was studied. The optimum conditions were time (120 min), pH (3), concentration (10 ppm) and adsorbent dosage (1.0 g). The kinetic modeling showed that the adsorption of Cr(VI) ion follows a pseudo second-order mechanism and the Langmuir isotherm model was found to fit better for this study. Response surface methodology (RSM)-based optimized parameters provided optimal parameter sets that better represent the adsorption rate models. The uptake capacity of Cr(VI) from aqueous solution was found to be biomass (76.49 mg/L) Ë biochar (86.51 mg/L) Ë TiO2 NC (92.89 mg/L). It can be suggested that the produced TiO2 NC could possibly be an efficient biosorbent for the removal of Cr(IV).
RESUMO
Drought is a serious threat worldwide to soybean and maize production. This study was conducted to discern the impact of salvianolic acid treatment on osmotic-stressed soybean (Glycine max L.) and maize (Zea mays L.) seedlings from the perspective of physiochemical and molecular reactions. Examination of varied salvianolic acid concentrations (0, 0.1, 1, 5, 10, and 25 µM) on soybean and maize seedling growth confirmed that the 0.1 and 1 µM concentrations, respectively, showed an improvement in agronomic traits. Likewise, the investigation ascertained how salvianolic acid application could retrieve osmotic-stressed plants. Soybean and maize seedlings were irrigated with water or 25% PEG for 8 days. The results indicated that salvianolic acid application promoted the survival of the 39-day-old osmotic-stressed soybean and maize plants. The salvianolic acid-treated plants retained high photosynthetic pigments, protein, amino acid, fatty acid, sugar, and antioxidant contents, and demonstrated low hydrogen peroxide and lipid contents under osmotic stress conditions. Gene transcription pattern certified that salvianolic acid application led to an increased expression of GmGOGAT, GmUBC2, ZmpsbA, ZmNAGK, ZmVPP1, and ZmSCE1d genes, and a diminished expression of GmMIPS2, GmSOG1, GmACS, GmCKX, ZmPIS, and ZmNAC48 genes. Together, our results indicate the utility of salvianolic acid to enhance the osmotic endurance of soybean and maize plants.
RESUMO
Micromeria biflora, a traditional medicinal plant, is extensively used for treating various painful conditions, such as nose bleeds, wounds, and sinusitis. A phytochemical investigation of the chloroform fraction of Micromeria biflora led to the isolation of salicylalazine. Salicylalazine was assessed in vivo for analgesia, muscle relaxation, sedative, and anti-inflammatory properties, as well as in vitro for COX-1/2 inhibition activities. It was assessed against a hot plate-induced model at different doses. The muscle relaxant potential of salicylalazine was evaluated in traction and inclined screening models, while sedative properties were determined using an open-field model. The anti-inflammatory potential of salicylalazine was assessed in histamine and carrageenan-induced paw edema screening models. Salicylalazine exhibited significant analgesic potential in a dose-dependent manner. In both screening models, an excellent time-dependent muscle-relaxation effect was observed. Salicylalazine demonstrated excellent sedation at high doses. Its anti-inflammatory activity was determined through the initial and late phases of edema. It exhibited anticancer potential against NCI-H226, HepG2, A498, and MDR2780AD cell lines. In vitro, salicylalazine showed preferential COX-2 inhibition (over COX-1) with an SI value of 4.85. It was less effective in the initial phase, while, in the later phase, it demonstrated significant effects at 15 and 20 mg/kg doses compared with the negative control. Salicylalazine did not exhibit cytotoxicity in the MTT assay, preliminarily indicating its safety.