Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 201(7): 1907-1917, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30127089

RESUMO

In both NOD mice and humans, the development of type 1 diabetes (T1D) is dependent in part on autoreactive CD8+ T cells recognizing pancreatic ß cell peptides presented by often quite common MHC class I variants. Studies in NOD mice previously revealed that the common H2-Kd and/or H2-Db class I molecules expressed by this strain aberrantly lose the ability to mediate the thymic deletion of pathogenic CD8+ T cell responses through interactions with T1D susceptibility genes outside the MHC. A gene(s) mapping to proximal chromosome 7 was previously shown to be an important contributor to the failure of the common class I molecules expressed by NOD mice to mediate the normal thymic negative selection of diabetogenic CD8+ T cells. Using an inducible model of thymic negative selection and mRNA transcript analyses, we initially identified an elevated Nfkbid expression variant as a likely NOD-proximal chromosome 7 region gene contributing to impaired thymic deletion of diabetogenic CD8+ T cells. CRISPR/Cas9-mediated genetic attenuation of Nfkbid expression in NOD mice resulted in improved negative selection of autoreactive diabetogenic AI4 and NY8.3 CD8+ T cells. These results indicated that allelic variants of Nfkbid contribute to the efficiency of intrathymic deletion of diabetogenic CD8+ T cells. However, although enhancing thymic deletion of pathogenic CD8+ T cells, ablating Nfkbid expression surprisingly accelerated T1D onset that was associated with numeric decreases in both regulatory T and B lymphocytes in NOD mice.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Cromossomos Humanos Par 7/genética , Diabetes Mellitus Tipo 1/imunologia , Proteínas I-kappa B/genética , Timo/imunologia , Alelos , Animais , Autoantígenos/imunologia , Diferenciação Celular , Células Cultivadas , Deleção Clonal , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Proteínas I-kappa B/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Polimorfismo Genético
2.
Diabetes ; 67(5): 923-935, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29472249

RESUMO

Improved mouse models for type 1 diabetes (T1D) therapy development are needed. T1D susceptibility is restored to normally resistant NOD.ß2m-/- mice transgenically expressing human disease-associated HLA-A*02:01 or HLA-B*39:06 class I molecules in place of their murine counterparts. T1D is dependent on pathogenic CD8+ T-cell responses mediated by these human class I variants. NOD.ß2m-/--A2.1 mice were previously used to identify ß-cell autoantigens presented by this human class I variant to pathogenic CD8+ T cells and for testing therapies to attenuate such effectors. However, NOD.ß2m-/- mice also lack nonclassical MHC I family members, including FcRn, required for antigen presentation, and maintenance of serum IgG and albumin, precluding therapies dependent on these molecules. Hence, we used CRISPR/Cas9 to directly ablate the NOD H2-Kd and H2-Db classical class I variants either individually or in tandem (cMHCI-/-). Ablation of the H2-Ag7 class II variant in the latter stock created NOD mice totally lacking in classical murine MHC expression (cMHCI/II-/-). NOD-cMHCI-/- mice retained nonclassical MHC I molecule expression and FcRn activity. Transgenic expression of HLA-A2 or -B39 restored pathogenic CD8+ T-cell development and T1D susceptibility to NOD-cMHCI-/- mice. These next-generation HLA-humanized NOD models may provide improved platforms for T1D therapy development.


Assuntos
Diabetes Mellitus Tipo 1/genética , Modelos Animais de Doenças , Antígeno HLA-A2/genética , Antígenos HLA-B/genética , Camundongos , Microglobulina beta-2/genética , Animais , Sistemas CRISPR-Cas , Diabetes Mellitus Tipo 1/terapia , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Transgênicos
3.
J Immunol ; 199(11): 3757-3770, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29055002

RESUMO

In NOD mice and also likely humans, B lymphocytes play an important role as APC-expanding autoreactive T cell responses ultimately causing type 1 diabetes (T1D). Currently, humans at high future T1D risk can only be identified at late prodromal stages of disease indicated by markers such as insulin autoantibodies. When commenced in already insulin autoantibody+ NOD mice, continuous BAFFR-Fc treatment alone or in combination with anti-CD20 (designated combo therapy) inhibited T1D development. Despite eliciting broader B lymphocyte depletion, continuous combo therapy afforded no greater T1D protection than did BAFFR-Fc alone. As previously observed, late disease stage-initiated anti-CD20 monotherapy did not inhibit T1D, and in this study was additionally found to be associated with development of drug-blocking Abs. Promisingly, NOD mice given transient late disease stage BAFFR-Fc monotherapy were rendered T1D resistant. However, combo treatment abrogated the protective effect of transient BAFFR-Fc monotherapy. NOD mice receiving transient BAFF blockade were characterized by an enrichment of regulatory B lymphocytes that inhibit T1D development through IL-10 production, but this population is sensitive to deletion by anti-CD20 treatment. B lymphocytes from transient BAFFR-Fc-treated mice suppressed T cell proliferation to a greater extent than did those from controls. Proportions of B lymphocytes expressing CD73, an ecto-enzyme operating in a pathway converting proinflammatory ATP to anti-inflammatory adenosine, were also temporarily increased by transient BAFFR-Fc treatment, but not anti-CD20 therapy. These collective studies indicate transient BAFFR-Fc-mediated B lymphocyte depletion elicits long-term T1D protection by enriching regulatory B lymphocytes that are deleted by anti-CD20 cotherapy.


Assuntos
Fator Ativador de Células B/antagonistas & inibidores , Linfócitos B Reguladores/imunologia , Diabetes Mellitus Tipo 1/imunologia , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Imunoterapia/métodos , Rituximab/uso terapêutico , Linfócitos T/imunologia , Animais , Receptor do Fator Ativador de Células B/genética , Receptor do Fator Ativador de Células B/uso terapêutico , Proliferação de Células , Células Cultivadas , Terapia Combinada , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunossupressão , Interleucina-10/metabolismo , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD
4.
Comp Med ; 67(4): 335-343, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28830580

RESUMO

Segmented filamentous bacterium (SFB) a gram-positive, anaerobic, and intestinal commensal organism directly influences the development of Th17 helper cells in the small intestine of mice. In NOD mice, SFB colonization interferes with the development of type 1 diabetes (T1D), a T-cell-mediated autoimmune disease, suggesting that SFB may influence Th17 cells to inhibit Th1 populations associated with the anti-ß-cell immune response. This effect is a serious concern for investigators who use NOD mice for diabetes research because the expected incidence of disease decreases markedly when they are colonized by SFB. A room housing mice for T1D studies at The Jackson Laboratory was determined by fecal PCR testing to have widespread SFB colonization of multiple NOD strains after a steady decline in the incidence of T1D was noted. Rederivation of all NOD-related mouse strains was not feasible; therefore an alternative treatment using antibiotics to eliminate SFB from colonized mice was undertaken. After antibiotic treatment, soiled bedding from NOD mouse strains housed in SFB-free high-health-status production barrier rooms was used to reintroduce the gastrointestinal microbiota. Over the past 16 mo since treating the mice and disinfecting the mouse room, regular PCR testing has shown that no additional SFB colonization of mice has occurred, and the expected incidence of T1D has been reestablished in the offspring of treated mice.


Assuntos
Ampicilina/farmacologia , Antibacterianos/farmacologia , Diabetes Mellitus Tipo 1/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/veterinária , Intestinos/efeitos dos fármacos , Criação de Animais Domésticos/métodos , Animais , Descontaminação/métodos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Modelos Animais de Doenças , Monitoramento Ambiental/métodos , Fezes/microbiologia , Predisposição Genética para Doença , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/microbiologia , Interações Hospedeiro-Patógeno , Intestinos/imunologia , Intestinos/microbiologia , Camundongos Endogâmicos NOD , Fenótipo , Células Th1/imunologia , Células Th1/microbiologia , Células Th17/imunologia , Células Th17/microbiologia , Fatores de Tempo
5.
J Immunol ; 198(11): 4255-4267, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28461573

RESUMO

B lymphocytes play a key role in type 1 diabetes (T1D) development by serving as a subset of APCs preferentially supporting the expansion of autoreactive pathogenic T cells. As a result of their pathogenic importance, B lymphocyte-targeted therapies have received considerable interest as potential T1D interventions. Unfortunately, the B lymphocyte-directed T1D interventions tested to date failed to halt ß cell demise. IgG autoantibodies marking humans at future risk for T1D indicate that B lymphocytes producing them have undergone the affinity-maturation processes of class switch recombination and, possibly, somatic hypermutation. This study found that CRISPR/Cas9-mediated ablation of the activation-induced cytidine deaminase gene required for class switch recombination/somatic hypermutation induction inhibits T1D development in the NOD mouse model. The activation-induced cytidine deaminase protein induces genome-wide DNA breaks that, if not repaired through RAD51-mediated homologous recombination, result in B lymphocyte death. Treatment with the RAD51 inhibitor 4,4'-diisothiocyanatostilbene-2, 2'-disulfonic acid also strongly inhibited T1D development in NOD mice. The genetic and small molecule-targeting approaches expanded CD73+ B lymphocytes that exert regulatory activity suppressing diabetogenic T cell responses. Hence, an initial CRISPR/Cas9-mediated genetic modification approach has identified the AID/RAD51 axis as a target for a potentially clinically translatable pharmacological approach that can block T1D development by converting B lymphocytes to a disease-inhibitory CD73+ regulatory state.


Assuntos
Linfócitos B Reguladores/imunologia , Proteínas de Transporte/antagonistas & inibidores , Citidina Desaminase/antagonistas & inibidores , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Ativação Linfocitária , Proteínas Nucleares/antagonistas & inibidores , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , 5'-Nucleotidase/imunologia , Animais , Autoanticorpos/imunologia , Sistemas CRISPR-Cas , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Diabetes Mellitus Experimental , Switching de Imunoglobulina , Camundongos , Camundongos Endogâmicos NOD , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Hipermutação Somática de Imunoglobulina
6.
Diabetes ; 65(7): 1977-1987, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26961115

RESUMO

While the autoimmune destruction of pancreatic ß-cells underlying type 1 diabetes (1D) development is ultimately mediated by T-cells in NOD mice and also likely humans, B-lymphocytes play an additional key pathogenic role. It appears expression of plasma membrane bound immunoglobulin (Ig) molecules that efficiently capture ß-cell antigens allows autoreactive B-lymphocytes bypassing normal tolerance induction processes to be the subset of antigen presenting cells most efficiently activating diabetogenic T-cells. NOD mice transgenically expressing Ig molecules recognizing antigens that are (insulin) or not (hen egg lysozyme; HEL) expressed by ß-cells have proven useful in dissecting the developmental basis of diabetogenic B-lymphocytes. However, these transgenic Ig specificities were originally selected for their ability to recognize insulin or HEL as foreign, rather than autoantigens. Thus, we generated and characterized NOD mice transgenically expressing an Ig molecule representative of a large proportion of naturally occurring islet-infiltrating B-lymphocytes in NOD mice recognizing the neuronal antigen peripherin. Transgenic peripherin autoreactive B-lymphocytes infiltrate NOD pancreatic islets, acquire an activated proliferative phenotype, and potently support accelerated T1D development. These results support the concept of neuronal autoimmunity as a pathogenic feature of T1D, and targeting such responses could ultimately provide an effective disease intervention approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA