Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Dalton Trans ; 47(47): 17067-17076, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30465052


In a previous investigation, it was shown that [Cu(tpym)(PPh3)]PF61 with tpym = tris(2-pyridyl)methane represents a deep blue emitter (λmax = 466 nm) though with a low emission quantum yield ΦPL if doped in a polymer (7%) or dissolved in a fluid solvent (≪1%). In this study, we present new tripod compounds with sterically demanding ligands: [Cu(tpym)(P(o-tol)3)]PF62 and [Cu(tpym)(P(o-butyl-ph)3)]PF63 with P(o-tol)3 = tris(ortho-tolyl)phosphine and P(o-butyl-ph)3 = tris(ortho-n-butylphenyl)phosphine. These compounds show high emission quantum yields even in a fluid solution (dichloromethane) reaching a benchmark value for 3 of ΦPL = 76%. This becomes possible due to the specific design of rigidifying the complexes. Importantly, the deep blue emission color is maintained or even further blue shifted to λmax = 452 nm (compound 3 powder). Compound 2 is characterized photophysically in detail. In particular, it is shown that the lowest excited triplet state T1 experiences very efficient spin-orbit coupling (SOC). Accordingly, the phosphorescence decay rate is as large as 5 × 104 s-1 (20 µs) belonging to the fastest T1→ S0 transition values (shortest decay times) reported so far. Investigations down to T = 1.5 K reveal a large total zero-field splitting (ZFS) of 7 cm-1 (0.9 meV). Although thermally activated delayed fluorescence (TADF) grows in at T≥ 160 K, the phosphorescence of 2 still dominates (60%) over TADF (40%) at ambient temperature. Thus, the compound represents a singlet harvesting-plus-triplet harvesting material, if applied in an OLED.

Dalton Trans ; 44(18): 8506-20, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25434594


A new class of emissive and neutral Cu(I) compounds with tripodal ligands is presented. The complexes were characterized chemically, computationally, and photophysically. Under ambient conditions, the powders of the compounds exhibit yellow to red emission with quantum yields ranging from about 5% to 35%. The emission represents a thermally activated delayed fluorescence (TADF) combined with a short-lived phosphorescence which represents a rare situation and is a consequence of high spin-orbit coupling (SOC). In the series of the investigated compounds the non-radiative rates increase with decreasing emission energy according to the energy gap law while the radiative rate is almost constant. Furthermore, a well-fit linear dependence between the experimental emission energies and the transition energies calculated by DFT and TD-DFT methods could be established, thus supporting the applicability of these computational methods also to Cu(I) complexes.