Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Filtros adicionais











Intervalo de ano
1.
Am J Med Genet A ; 179(9): 1725-1744, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31222966

RESUMO

Costello syndrome (CS) is a RASopathy caused by activating germline mutations in HRAS. Due to ubiquitous HRAS gene expression, CS affects multiple organ systems and individuals are predisposed to cancer. Individuals with CS may have distinctive craniofacial features, cardiac anomalies, growth and developmental delays, as well as dermatological, orthopedic, ocular, and neurological issues; however, considerable overlap with other RASopathies exists. Medical evaluation requires an understanding of the multifaceted phenotype. Subspecialists may have limited experience in caring for these individuals because of the rarity of CS. Furthermore, the phenotypic presentation may vary with the underlying genotype. These guidelines were developed by an interdisciplinary team of experts in order to encourage timely health care practices and provide medical management guidelines for the primary and specialty care provider, as well as for the families and affected individuals across their lifespan. These guidelines are based on expert opinion and do not represent evidence-based guidelines due to the lack of data for this rare condition.

2.
Am J Med Genet A ; 179(6): 1091-1097, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30908877

RESUMO

The neurofibromatoses, which include neurofibromatosis type I (NF1), neurofibromatosis type II (NF2), and schwannomatosis, are a group of syndromes characterized by tumor growth in the nervous system. The RASopathies are a group of syndromes caused by germline mutations in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) pathway. The RASopathies include NF1, Noonan syndrome, Noonan syndrome with multiple lentigines, Costello syndrome, cardio-facio-cutaneous syndrome, Legius syndrome, capillary malformation arterio-venous malformation syndrome, and SYNGAP1 autism. Due to their common underlying pathogenetic etiology, all these syndromes have significant phenotypic overlap of which one common feature include a predisposition to tumors, which may be benign or malignant. Together as a group, they represent one of the most common multiple congenital anomaly syndromes estimating to affect approximately one in 1000 individuals worldwide. The subcontinent of India represents one of the largest populations in the world, yet remains underserved from an aspect of clinical genetics services. In an effort to bridge this gap, the First International Conference on RASopathies and Neurofibromatoses in Asia: Identification and Advances of New Therapeutics was held in Kochi, Kerala, India. These proceedings chronicle this timely and topical international symposium directed at discussing the best practices and therapies for individuals with neurofibromatoses and RASopathies.

3.
Hum Mutat ; 39(11): 1485-1493, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30311384

RESUMO

The RASopathies are a complex group of conditions regarding phenotype and genetic etiology. The ClinGen RASopathy Expert Panel (RAS EP) assessed published and other publicly available evidence supporting the association of 19 genes with RASopathy conditions. Using the semiquantitative literature curation method developed by the ClinGen Gene Curation Working Group, evidence for each gene was curated and scored for Noonan syndrome (NS), Costello syndrome, cardiofaciocutaneous syndrome, NS with multiple lentigines, and Noonan-like syndrome with loose anagen hair. The curated evidence supporting each gene-disease relationship was then discussed and approved by the ClinGen RASopathy Expert Panel. Each association's strength was classified as definitive, strong, moderate, limited, disputed, or no evidence. Eleven genes were classified as definitively associated with at least one RASopathy condition. Two genes classified as strong for association with at least one RASopathy condition while one gene was moderate and three were limited. The RAS EP also disputed the association of two genes for all RASopathy conditions. Overall, our results provide a greater understanding of the different gene-disease relationships within the RASopathies and can help in guiding and directing clinicians, patients, and researchers who are identifying variants in individuals with a suspected RASopathy.

4.
Am J Med Genet A ; : e40632, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30302932

RESUMO

This report summarizes and highlights the fifth International RASopathies Symposium: When Development and Cancer Intersect, held in Orlando, Florida in July 2017. The RASopathies comprise a recognizable pattern of malformation syndromes that are caused by germ line mutations in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) pathway. Because of their common underlying pathogenetic etiology, there is significant overlap in their phenotypic features, which includes craniofacial dysmorphology, cardiac, cutaneous, musculoskeletal, gastrointestinal and ocular abnormalities, neurological and neurocognitive issues, and a predisposition to cancer. The RAS pathway is a well-known oncogenic pathway that is commonly found to be activated in somatic malignancies. As in somatic cancers, the RASopathies can be caused by various pathogenetic mechanisms that ultimately impact or alter the normal function and regulation of the MAPK pathway. As such, the RASopathies represent an excellent model of study to explore the intersection of the effects of dysregulation and its consequence in both development and oncogenesis.

6.
Genet Med ; 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30190611

RESUMO

PURPOSE: Neurofibromatosis type 1 (NF1) is characterized by a highly variable clinical presentation, but almost all NF1-affected adults present with cutaneous and/or subcutaneous neurofibromas. Exceptions are individuals heterozygous for the NF1 in-frame deletion, c.2970_2972del (p.Met992del), associated with a mild phenotype without any externally visible tumors. METHODS: A total of 135 individuals from 103 unrelated families, all carrying the constitutional NF1 p.Met992del pathogenic variant and clinically assessed using the same standardized phenotypic checklist form, were included in this study. RESULTS: None of the individuals had externally visible plexiform or histopathologically confirmed cutaneous or subcutaneous neurofibromas. We did not identify any complications, such as symptomatic optic pathway gliomas (OPGs) or symptomatic spinal neurofibromas; however, 4.8% of individuals had nonoptic brain tumors, mostly low-grade and asymptomatic, and 38.8% had cognitive impairment/learning disabilities. In an individual with the NF1 constitutional c.2970_2972del and three astrocytomas, we provided proof that all were NF1-associated tumors given loss of heterozygosity at three intragenic NF1 microsatellite markers and c.2970_2972del. CONCLUSION: We demonstrate that individuals with the NF1 p.Met992del pathogenic variant have a mild NF1 phenotype lacking clinically suspected plexiform, cutaneous, or subcutaneous neurofibromas. However, learning difficulties are clearly part of the phenotypic presentation in these individuals and will require specialized care.

7.
Am J Med Genet B Neuropsychiatr Genet ; 177(4): 434-446, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29659143

RESUMO

Personality is a complex, yet partially heritable, trait. Although some Mendelian diseases like Williams-Beuren syndrome are associated with a particular personality profile, studies have failed to assign the personality features to a single gene or pathway. As a family of monogenic disorders caused by mutations in the Ras/MAPK pathway known to influence social behavior, RASopathies are likely to provide insight into the genetic basis of personality. Eighty subjects diagnosed with cardiofaciocutaneous syndrome, Costello syndrome, neurofibromatosis type 1, and Noonan syndrome were assessed using a parent-report BFQ-C (Big Five Questionnaire for Children) evaluating agreeableness, extraversion, conscientiousness, intellect/openness, and neuroticism, along with 55 unaffected sibling controls. A short questionnaire was added to assess sense of humor. RASopathy subjects and sibling controls were compared for individual components of personality, multidimensional personality profiles, and individual questions using Student tests, analysis of variance, and principal component analysis. RASopathy subjects were given lower scores on average compared to sibling controls in agreeableness, extraversion, conscientiousness, openness, and sense of humor, and similar scores in neuroticism. When comparing the multidimensional personality profile between groups, RASopathies showed a distinct profile from unaffected siblings, but no difference in this global profile was found within RASopathies, revealing a common profile for the Ras/MAPK-related disorders. In addition, several syndrome-specific strengths or weaknesses were observed in individual domains. We describe for the first time an association between a single pathway and a specific personality profile, providing a better understanding of the genetics underlying personality, and new tools for tailoring educational and behavioral approaches for individuals with RASopathies.

8.
Dis Model Mech ; 11(3)2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29590634

RESUMO

The RAS/MAPK signaling pathway is one of the most investigated pathways, owing to its established role in numerous cellular processes and implication in cancer. Germline mutations in genes encoding members of the RAS/MAPK pathway also cause severe developmental syndromes collectively known as RASopathies. These syndromes share overlapping characteristics, including craniofacial dysmorphology, cardiac malformations, cutaneous abnormalities and developmental delay. Cardio-facio-cutaneous syndrome (CFC) is a rare RASopathy associated with mutations in BRAF, KRAS, MEK1 (MAP2K1) and MEK2 (MAP2K2). MEK1 and MEK2 mutations are found in ∼25% of the CFC patients and the MEK1Y130C substitution is the most common one. However, little is known about the origins and mechanisms responsible for the development of CFC. To our knowledge, no mouse model carrying RASopathy-linked Mek1 or Mek2 gene mutations has been reported. To investigate the molecular and developmental consequences of the Mek1Y130C mutation, we generated a mouse line carrying this mutation. Analysis of mice from a Mek1 allelic series revealed that the Mek1Y130C allele expresses both wild-type and Y130C mutant forms of MEK1. However, despite reduced levels of MEK1 protein and the lower abundance of MEK1 Y130C protein than wild type, Mek1Y130C mutants showed increased ERK (MAPK) protein activation in response to growth factors, supporting a role for MEK1 Y130C in hyperactivation of the RAS/MAPK pathway, leading to CFC. Mek1Y130C mutant mice exhibited pulmonary artery stenosis, cranial dysmorphia and neurological anomalies, including increased numbers of GFAP+ astrocytes and Olig2+ oligodendrocytes in regions of the cerebral cortex. These data indicate that the Mek1Y130C mutation recapitulates major aspects of CFC, providing a new animal model to investigate the physiopathology of this RASopathy. This article has an associated First Person interview with the first author of the paper.


Assuntos
Displasia Ectodérmica/genética , Insuficiência de Crescimento/genética , Cardiopatias Congênitas/genética , MAP Quinase Quinase 1/genética , Mutação/genética , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/patologia , Contagem de Células , Embrião de Mamíferos/citologia , Facies , Fibroblastos/enzimologia , Duplicação Gênica , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , MAP Quinase Quinase 1/química , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Mutantes , Fator de Transcrição 2 de Oligodendrócitos/metabolismo
9.
Am J Med Genet A ; 176(4): 1027-1028, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29575620
10.
Genet Med ; 20(11): 1334-1345, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29493581

RESUMO

PURPOSE: Standardized and accurate variant assessment is essential for effective medical care. To that end, Clinical Genome (ClinGen) Resource clinical domain working groups (CDWGs) are systematically reviewing disease-associated genes for sufficient evidence to support disease causality and creating disease-specific specifications of American College of Medical Genetics and Genomics-Association for Molecular Pathology (ACMG-AMP) guidelines for consistent and accurate variant classification. METHODS: The ClinGen RASopathy CDWG established an expert panel to curate gene information and generate gene- and disease-specific specifications to ACMG-AMP variant classification framework. These specifications were tested by classifying 37 exemplar pathogenic variants plus an additional 66 variants in ClinVar distributed across nine RASopathy genes. RESULTS: RASopathy-related specifications were applied to 16 ACMG-AMP criteria, with 5 also having adjustable strength with availability of additional evidence. Another 5 criteria were deemed not applicable. Key adjustments to minor allele frequency thresholds, multiple de novo occurrence events and/or segregation, and strength adjustments impacted 60% of variant classifications. Unpublished case-level data from participating laboratories impacted 45% of classifications supporting the need for data sharing. CONCLUSION: RAS-specific ACMG-AMP specifications optimized the utility of available clinical evidence and Ras/MAPK pathway-specific characteristics to consistently classify RASopathy-associated variants. These specifications highlight how grouping genes by shared features promotes rapid multigenic variant assessment without sacrificing specificity and accuracy.

11.
PLoS Genet ; 13(1): e1006516, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28076348

RESUMO

Although gene-gene interaction, or epistasis, plays a large role in complex traits in model organisms, genome-wide by genome-wide searches for two-way interaction have limited power in human studies. We thus used knowledge of a biological pathway in order to identify a contribution of epistasis to autism spectrum disorders (ASDs) in humans, a reverse-pathway genetic approach. Based on previous observation of increased ASD symptoms in Mendelian disorders of the Ras/MAPK pathway (RASopathies), we showed that common SNPs in RASopathy genes show enrichment for association signal in GWAS (P = 0.02). We then screened genome-wide for interactors with RASopathy gene SNPs and showed strong enrichment in ASD-affected individuals (P < 2.2 x 10-16), with a number of pairwise interactions meeting genome-wide criteria for significance. Finally, we utilized quantitative measures of ASD symptoms in RASopathy-affected individuals to perform modifier mapping via GWAS. One top region overlapped between these independent approaches, and we showed dysregulation of a gene in this region, GPR141, in a RASopathy neural cell line. We thus used orthogonal approaches to provide strong evidence for a contribution of epistasis to ASDs, confirm a role for the Ras/MAPK pathway in idiopathic ASDs, and to identify a convergent candidate gene that may interact with the Ras/MAPK pathway.


Assuntos
Transtorno do Espectro Autista/genética , Epistasia Genética , Sistema de Sinalização das MAP Quinases/genética , Proteínas ras/genética , Linhagem Celular , Feminino , Genes Modificadores , Estudo de Associação Genômica Ampla , Humanos , Masculino , Células-Tronco Neurais/metabolismo , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas-G/genética , Receptores Acoplados a Proteínas-G/metabolismo
12.
Curr Genet Med Rep ; 4(3): 57-64, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27942422

RESUMO

The Ras/mitogen activated protein kinase (MAPK) pathway is essential in the regulation of cell cycle, differentiation, growth, cell senescence and apoptosis, all of which are critical to normal development. A class of neurodevelopmental disorders, RASopathies, is caused by germline mutations in genes of the Ras/MAPK pathway. Through the use of whole exome sequencing and targeted sequencing of selected genes in cohorts of panel-negative RASopathy patients, several new genes have been identified. These include: RIT1, SOS2, RASA2, RRAS and SYNGAP1, that likely represent new, albeit rare, causative RASopathy genes. In addition, A2ML1, LZTR1, MYST4, SPRY1 and MAP3K8 may represent new rare genes for RASopathies, but, additional functional studies regarding the mutations are warranted. In addition, recent reports have demonstrated that chromosomal copy number variation in regions encompassing Ras/MAPK pathway genes may be a novel pathogenetic mechanism expanding the RASopathies.

13.
Stem Cell Reports ; 7(3): 355-369, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27569062

RESUMO

Germline mutations in BRAF cause cardio-facio-cutaneous syndrome (CFCS), whereby 40% of patients develop hypertrophic cardiomyopathy (HCM). As the role of the RAS/MAPK pathway in HCM pathogenesis is unclear, we generated a human induced pluripotent stem cell (hiPSC) model for CFCS from three patients with activating BRAF mutations. By cell sorting for SIRPα and CD90, we generated a method to examine hiPSC-derived cell type-specific phenotypes and cellular interactions underpinning HCM. BRAF-mutant SIRPα(+)/CD90(-) cardiomyocytes displayed cellular hypertrophy, pro-hypertrophic gene expression, and intrinsic calcium-handling defects. BRAF-mutant SIRPα(-)/CD90(+) cells, which were fibroblast-like, exhibited a pro-fibrotic phenotype and partially modulated cardiomyocyte hypertrophy through transforming growth factor ß (TGFß) paracrine signaling. Inhibition of TGFß or RAS/MAPK signaling rescued the hypertrophic phenotype. Thus, cell autonomous and non-autonomous defects underlie HCM due to BRAF mutations. TGFß inhibition may be a useful therapeutic option for patients with HCM due to RASopathies or other etiologies.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Biomarcadores , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Separação Celular , Reprogramação Celular , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos/patologia , Comunicação Parácrina , Fenótipo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Proteínas ras/metabolismo
14.
Hum Mol Genet ; 25(R2): R123-R132, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27412009

RESUMO

The RASopathies are defined as a group of medical genetics syndromes that are caused by germ-line mutations in genes that encode components or regulators of the Ras/mitogen-activated protein kinase (MAPK) pathway. Taken together, the RASopathies represent one of the most prevalent groups of malformation syndromes affecting greater than 1 in 1,000 individuals. The Ras/MAPK pathway has been well studied in the context of cancer as it plays essential roles in growth, differentiation, cell cycle, senescence and apoptosis, all of which are also critical to normal development. The consequence of germ-line dysregulation leads to phenotypic alterations of development. RASopathies can be caused by several pathogenetic mechanisms that ultimately impact or alter the normal function and regulation of the MAPK pathway. These pathogenetic mechanisms can include functional alteration of GTPases, Ras GTPase-activating proteins, Ras guanine exchange factors, kinases, scaffolding or adaptor proteins, ubiquitin ligases, phosphatases and pathway inhibitors. Although these mechanisms are diverse, the common underlying biochemical phenotype shared by all the RASopathies is Ras/MAPK pathway activation. This results in the overlapping phenotypic features among these syndromes.

15.
Am J Med Genet A ; 170(8): 1959-66, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27155140

RESUMO

The RASopathies are a group of disorders due to variations of genes associated with the Ras/MAPK pathway. Some of the RASopathies include neurofibromatosis type 1 (NF1), Noonan syndrome, Noonan syndrome with multiple lentigines, cardiofaciocutaneous (CFC) syndrome, Costello syndrome, Legius syndrome, and capillary malformation-arteriovenous malformation (CM-AVM) syndrome. In combination, the RASopathies are a frequent group of genetic disorders. This report summarizes the proceedings of the 4th International Symposium on Genetic Disorders of the Ras/MAPK pathway and highlights gaps in the field. © 2016 Wiley Periodicals, Inc.


Assuntos
Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Financiamento de Capital , Ensaios Clínicos como Assunto , Família , Doenças Genéticas Inatas/diagnóstico , Humanos , Colaboração Intersetorial , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas ras/genética
16.
J Neurosci ; 36(1): 142-52, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26740656

RESUMO

UNLABELLED: Increasing evidence implicates abnormal Ras signaling as a major contributor in neurodevelopmental disorders, yet how such signaling causes cortical pathogenesis is unknown. We examined the consequences of aberrant Ras signaling in the developing mouse brain and uncovered several critical phenotypes, including increased production of cortical neurons and morphological deficits. To determine whether these phenotypes are recapitulated in humans, we generated induced pluripotent stem (iPS) cell lines from patients with Costello syndrome (CS), a developmental disorder caused by abnormal Ras signaling and characterized by neurodevelopmental abnormalities, such as cognitive impairment and autism. Directed differentiation toward a neuroectodermal fate revealed an extended progenitor phase and subsequent increased production of cortical neurons. Morphological analysis of mature neurons revealed significantly altered neurite length and soma size in CS patients. This study demonstrates the synergy between mouse and human models and validates the use of iPS cells as a platform to study the underlying cellular pathologies resulting from signaling deficits. SIGNIFICANCE STATEMENT: Increasing evidence implicates Ras signaling dysfunction as a major contributor in psychiatric and neurodevelopmental disorders, such as cognitive impairment and autism, but the underlying cortical cellular pathogenesis remains unclear. This study is the first to reveal human neuronal pathogenesis resulting from abnormal Ras signaling and provides insights into how these phenotypic abnormalities likely contribute to neurodevelopmental disorders. We also demonstrate the synergy between mouse and human models, thereby validating the use of iPS cells as a platform to study underlying cellular pathologies resulting from signaling deficits. Recapitulating human cellular pathologies in vitro facilitates the future high throughput screening of potential therapeutic agents that may reverse phenotypic and behavioral deficits.


Assuntos
Síndrome de Costello/metabolismo , Síndrome de Costello/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Proteínas ras/metabolismo , Adolescente , Adulto , Diferenciação Celular , Células Cultivadas , Criança , Pré-Escolar , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Lactente , Masculino , Pessoa de Meia-Idade , Regulação para Cima
18.
Dis Model Mech ; 8(8): 769-82, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26203125

RESUMO

RASopathies are developmental disorders caused by germline mutations in the Ras-MAPK pathway, and are characterized by a broad spectrum of functional and morphological abnormalities. The high incidence of these disorders (∼1/1000 births) motivates the development of systematic approaches for their efficient diagnosis and potential treatment. Recent advances in genome sequencing have greatly facilitated the genotyping and discovery of mutations in affected individuals, but establishing the causal relationships between molecules and disease phenotypes is non-trivial and presents both technical and conceptual challenges. Here, we discuss how these challenges could be addressed using genetically modified model organisms that have been instrumental in delineating the Ras-MAPK pathway and its roles during development. Focusing on studies in mice, zebrafish and Drosophila, we provide an up-to-date review of animal models of RASopathies at the molecular and functional level. We also discuss how increasingly sophisticated techniques of genetic engineering can be used to rigorously connect changes in specific components of the Ras-MAPK pathway with observed functional and morphological phenotypes. Establishing these connections is essential for advancing our understanding of RASopathies and for devising rational strategies for their management and treatment.


Assuntos
Modelos Animais de Doenças , Proteínas ras/metabolismo , Animais , Engenharia Genética , Humanos , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Mutação/genética
19.
Sci Transl Med ; 7(286): 286ra66, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25947161

RESUMO

Astrocytes produce an assortment of signals that promote neuronal maturation according to a precise developmental timeline. Is this orchestrated timing and signaling altered in human neurodevelopmental disorders? To address this question, the astroglial lineage was investigated in two model systems of a developmental disorder with intellectual disability caused by mutant Harvey rat sarcoma viral oncogene homolog (HRAS) termed Costello syndrome: mutant HRAS human induced pluripotent stem cells (iPSCs) and transgenic mice. Human iPSCs derived from patients with Costello syndrome differentiated to astroglia more rapidly in vitro than those derived from wild-type cell lines with normal HRAS, exhibited hyperplasia, and also generated an abundance of extracellular matrix remodeling factors and proteoglycans. Acute treatment with a farnesyl transferase inhibitor and knockdown of the transcription factor SNAI2 reduced expression of several proteoglycans in Costello syndrome iPSC-derived astrocytes. Similarly, mice in which mutant HRAS was expressed selectively in astrocytes exhibited experience-independent increased accumulation of perineuronal net proteoglycans in cortex, as well as increased parvalbumin expression in interneurons, when compared to wild-type mice. Our data indicate that astrocytes expressing mutant HRAS dysregulate cortical maturation during development as shown by abnormal extracellular matrix remodeling and implicate excessive astrocyte-to-neuron signaling as a possible drug target for treating mental impairment and enhancing neuroplasticity.


Assuntos
Astrócitos/citologia , Síndrome de Costello/metabolismo , Matriz Extracelular/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Transdução de Sinais , Animais , Astrócitos/metabolismo , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica , Genes ras , Genótipo , Hipocampo/metabolismo , Humanos , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Mutação , Plasticidade Neuronal , Neurônios/citologia , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteoglicanas/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas ras/metabolismo
20.
Am J Med Genet A ; 167A(8): 1741-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25900621

RESUMO

"The Third International Meeting on Genetic Disorders in the RAS/MAPK Pathway: Towards a Therapeutic Approach" was held at the Renaissance Orlando at SeaWorld Hotel (August 2-4, 2013). Seventy-one physicians and scientists attended the meeting, and parallel meetings were held by patient advocacy groups (CFC International, Costello Syndrome Family Network, NF Network and Noonan Syndrome Foundation). Parent and patient advocates opened the meeting with a panel discussion to set the stage regarding their hopes and expectations for therapeutic advances. In keeping with the theme on therapeutic development, the sessions followed a progression from description of the phenotype and definition of therapeutic endpoints, to definition of genomic changes, to identification of therapeutic targets in the RAS/MAPK pathway, to preclinical drug development and testing, to clinical trials. These proceedings will review the major points of discussion.


Assuntos
Doenças Genéticas Inatas/genética , Sistema de Sinalização das MAP Quinases , Proteínas ras/metabolismo , Doenças Genéticas Inatas/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA