Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Food Chem ; 304: 125415, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31479995


The aim of our study was to characterize the proteolytic activity of 170 Lactobacillus strains isolated from traditional Mongolian dairy products (yogurt and fermented milk), and to investigate their capacity to generate bioactive peptides during milk fermentation. All isolates were screened for proteolytic activity using skim milk agar-well diffusion test. Fifteen strains (9 Lactobacillus helveticus and 6 Lactobacillus delbrueckii subsp. bulgaricus) were then selected and further evaluated using an original strategy based on multiparametric analysis, taking into account growth rate, acidification capacity, proteolytic activity, cell envelope associated peptidase (CEP) profile and LC-MS/MS analysis of peptides. All parameters were analyzed using principal component analysis (PCA). Results showed that strain growth and acidification correlate with peptide production and that Mongolian L. helveticus strains differ from Western strains in terms of CEP distribution. The PCA revealed that CEP profiles are major determinants of ß-casein hydrolysis patterns. Strains with distinctive proteolytic activities were identified.

Front Microbiol ; 9: 2354, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386307


To compensate for their amino acid auxotrophy, lactobacilli have developed the ability to hydrolyze proteins present in their environment. This proteolytic activity not only generates the free amino acids needed by the bacteria, but also a large variety of peptides, some of which are endowed with biological activities. These so-called "bioactive peptides" (BAPs) are interesting from a nutrition and healthcare perspective. The use of lactic acid bacteria (LAB) such as lactobacilli is an effective strategy for production and valorization of new BAPs. The proteolytic activity of lactobacilli is exerted in a strain- and species-dependent manner: each species exhibits different proteinase content, leading to a large variety of proteolytic activities. This underlines the high potential of Lactobacillus strains to produce novel hydrolysates and BAPs of major interest. This review aims at discussing the potential of different Lactobacillus species to release BAPs from fermentation media and processes. Strategies used for peptide production are presented. Additionally, we propose a methodology to select the most promising Lactobacillus strains as sources of BAPs. This methodology combines conventional approaches and in silico analyses.