Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 10(6): 1866-1872, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30842855

RESUMO

Novel functionalities may be achieved in oxide electronics by appropriate stacking of planar oxide layers of different metallic species, MO p and M'O q . The simplest mechanism allowing the tailoring of the electronic states and physical properties of such heterostructures is of electrostatic nature-charge imbalance between the M and M' cations. Here we clarify the effect of interlayer electrostatics on the anisotropic Kitaev exchange in H3LiIr2O6, a recently proposed realization of the Kitaev spin liquid. By quantum chemical calculations, we show that the precise position of H+ cations between magnetically active [LiIr2O6]3- honeycomb-like layers has a strong impact on the magnitude of Kitaev interactions. In particular, it is found that stacking with straight interlayer O-H-O links is detrimental to in-plane Kitaev exchange since coordination by a single H-ion of the O ligand implies an axial Coulomb potential at the O site and unfavorable polarization of the O 2p orbitals mediating the Ir-Ir interactions. Our results therefore provide valuable guidelines for the rational design of Kitaev quantum magnets, indicating unprecedented Kitaev interactions of ≈40 meV if the linear interlayer linkage is removed.

2.
Nat Commun ; 10(1): 571, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718550

RESUMO

Engineering intramolecular exchange interactions between magnetic metal atoms is a ubiquitous strategy for designing molecular magnets. For lanthanides, the localized nature of 4f electrons usually results in weak exchange coupling. Mediating magnetic interactions between lanthanide ions via radical bridges is a fruitful strategy towards stronger coupling. In this work we explore the limiting case when the role of a radical bridge is played by a single unpaired electron. We synthesize an array of air-stable Ln2@C80(CH2Ph) dimetallofullerenes (Ln2 = Y2, Gd2, Tb2, Dy2, Ho2, Er2, TbY, TbGd) featuring a covalent lanthanide-lanthanide bond. The lanthanide spins are glued together by very strong exchange interactions between 4f moments and a single electron residing on the metal-metal bonding orbital. Tb2@C80(CH2Ph) shows a gigantic coercivity of 8.2 Tesla at 5 K and a high 100-s blocking temperature of magnetization of 25.2 K. The Ln-Ln bonding orbital in Ln2@C80(CH2Ph) is redox active, enabling electrochemical tuning of the magnetism.

3.
Phys Rev Lett ; 121(19): 197203, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30468592

RESUMO

Very recently a quantum liquid was reported to form in H_{3}LiIr_{2}O_{6}, an iridate proposed to be a close realization of the Kitaev honeycomb model. To test this assertion we perform detailed quantum chemistry calculations to determine the magnetic interactions between Ir moments. We find that weakly bond dependent ferromagnetic Kitaev exchange dominates over other couplings, but still is substantially lower than in Na_{2}IrO_{3}. This reduction is caused by the peculiar position of the interlayer species: removing hydrogen cations next to a Ir_{2}O_{2} plaquette increases the Kitaev exchange by more than a factor of 3 on the corresponding Ir─Ir link. Consequently, any lack of hydrogen order will have a drastic effect on the magnetic interactions and strongly promote spin disordering.

4.
Sci Rep ; 7: 42255, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176869

RESUMO

We show that introducing electrons in magnetic clusters and molecular magnets lead to rich phase diagrams with a variety of low-spin and high-spin states allowing for multiple switchability. The analysis is carried out for a quantum spin-fermion model using the exact diagonalization, and the cluster mean-field approach. The model is relevant for a number of molecular magnets with triangular motifs consisting of transition metal ions such as Cr, Cu and V. Re-entrant spin-state behavior and chirality on-off transitions exist over a wide parameter regime. A subtle competition among geometrical frustration effects, electron itinerancy, and Kondo coupling at the molecular level is highlighted. Our results demonstrate that electron doping provides a viable mean to tame the magnetic properties of molecular magnets towards potential technological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA