Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes Care ; 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601636

RESUMO

OBJECTIVE: Maternal gestational diabetes mellitus (GDM) has been associated with adverse outcomes in the offspring. Growing evidence suggests that the epigenome may play a role, but most previous studies have been small and adjusted for few covariates. The current study meta-analyzed the association between maternal GDM and cord blood DNA methylation in the Pregnancy and Childhood Epigenetics (PACE) consortium. RESEARCH DESIGN AND METHODS: Seven pregnancy cohorts (3,677 mother-newborn pairs [317 with GDM]) contributed results from epigenome-wide association studies, using DNA methylation data acquired by the Infinium HumanMethylation450 BeadChip array. Associations between GDM and DNA methylation were examined using robust linear regression, with adjustment for potential confounders. Fixed-effects meta-analyses were performed using METAL. Differentially methylated regions (DMRs) were identified by taking the intersection of results obtained using two regional approaches: comb-p and DMRcate. RESULTS: Two DMRs were identified by both comb-p and DMRcate. Both regions were hypomethylated in newborns exposed to GDM in utero compared with control subjects. One DMR (chr 1: 248100345-248100614) was located in the OR2L13 promoter, and the other (chr 10: 135341870-135342620) was located in the gene body of CYP2E1. Individual CpG analyses did not reveal any differentially methylated loci based on a false discovery rate-adjusted P value threshold of 0.05. CONCLUSIONS: Maternal GDM was associated with lower cord blood methylation levels within two regions, including the promoter of OR2L13, a gene associated with autism spectrum disorder, and the gene body of CYP2E1, which is upregulated in type 1 and type 2 diabetes. Future studies are needed to understand whether these associations are causal and possible health consequences.

2.
Epigenomics ; 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31536415

RESUMO

Aim: Cigarette smoking influences DNA methylation genome wide, in newborns from pregnancy exposure and in adults from personal smoking. Whether a unique methylation signature exists for in utero exposure in newborns is unknown. Materials & methods: We separately meta-analyzed newborn blood DNA methylation (assessed using Illumina450k Beadchip), in relation to sustained maternal smoking during pregnancy (9 cohorts, 5648 newborns, 897 exposed) and adult blood methylation and personal smoking (16 cohorts, 15907 participants, 2433 current smokers). Results & conclusion: Comparing meta-analyses, we identified numerous signatures specific to newborns along with many shared between newborns and adults. Unique smoking-associated genes in newborns were enriched in xenobiotic metabolism pathways. Our findings may provide insights into specific health impacts of prenatal exposure on offspring.

3.
Int J Epidemiol ; 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31549173

RESUMO

BACKGROUND: DNA methylation changes in peripheral blood have recently been identified in relation to lung cancer risk. Some of these changes have been suggested to mediate part of the effect of smoking on lung cancer. However, limitations with conventional mediation analyses mean that the causal nature of these methylation changes has yet to be fully elucidated. METHODS: We first performed a meta-analysis of four epigenome-wide association studies (EWAS) of lung cancer (918 cases, 918 controls). Next, we conducted a two-sample Mendelian randomization analysis, using genetic instruments for methylation at CpG sites identified in the EWAS meta-analysis, and 29 863 cases and 55 586 controls from the TRICL-ILCCO lung cancer consortium, to appraise the possible causal role of methylation at these sites on lung cancer. RESULTS: Sixteen CpG sites were identified from the EWAS meta-analysis [false discovery rate (FDR) < 0.05], for 14 of which we could identify genetic instruments. Mendelian randomization provided little evidence that DNA methylation in peripheral blood at the 14 CpG sites plays a causal role in lung cancer development (FDR > 0.05), including for cg05575921-AHRR where methylation is strongly associated with both smoke exposure and lung cancer risk. CONCLUSIONS: The results contrast with previous observational and mediation analysis, which have made strong claims regarding the causal role of DNA methylation. Thus, previous suggestions of a mediating role of methylation at sites identified in peripheral blood, such as cg05575921-AHRR, could be unfounded. However, this study does not preclude the possibility that differential DNA methylation at other sites is causally involved in lung cancer development, especially within lung tissue.

4.
PLoS Med ; 16(8): e1002893, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31390370

RESUMO

BACKGROUND: Various risk factors have been associated with epithelial ovarian cancer risk in observational epidemiological studies. However, the causal nature of the risk factors reported, and thus their suitability as effective intervention targets, is unclear given the susceptibility of conventional observational designs to residual confounding and reverse causation. Mendelian randomization (MR) uses genetic variants as proxies for risk factors to strengthen causal inference in observational studies. We used MR to evaluate the association of 12 previously reported risk factors (reproductive, anthropometric, clinical, lifestyle, and molecular factors) with risk of invasive epithelial ovarian cancer, invasive epithelial ovarian cancer histotypes, and low malignant potential tumours. METHODS AND FINDINGS: Genetic instruments to proxy 12 risk factors were constructed by identifying single nucleotide polymorphisms (SNPs) that were robustly (P < 5 × 10-8) and independently associated with each respective risk factor in previously reported genome-wide association studies. These risk factors included genetic liability to 3 factors (endometriosis, polycystic ovary syndrome, type 2 diabetes) scaled to reflect a 50% higher odds liability to disease. We obtained summary statistics for the association of these SNPs with risk of overall and histotype-specific invasive epithelial ovarian cancer (22,406 cases; 40,941 controls) and low malignant potential tumours (3,103 cases; 40,941 controls) from the Ovarian Cancer Association Consortium (OCAC). The OCAC dataset comprises 63 genotyping project/case-control sets with participants of European ancestry recruited from 14 countries (US, Australia, Belarus, Germany, Belgium, Denmark, Finland, Norway, Canada, Poland, UK, Spain, Netherlands, and Sweden). SNPs were combined into multi-allelic inverse-variance-weighted fixed or random effects models to generate effect estimates and 95% confidence intervals (CIs). Three complementary sensitivity analyses were performed to examine violations of MR assumptions: MR-Egger regression and weighted median and mode estimators. A Bonferroni-corrected P value threshold was used to establish strong evidence (P < 0.0042) and suggestive evidence (0.0042 < P < 0.05) for associations. In MR analyses, there was strong or suggestive evidence that 2 of the 12 risk factors were associated with invasive epithelial ovarian cancer and 8 of the 12 were associated with 1 or more invasive epithelial ovarian cancer histotypes. There was strong evidence that genetic liability to endometriosis was associated with an increased risk of invasive epithelial ovarian cancer (odds ratio [OR] per 50% higher odds liability: 1.10, 95% CI 1.06-1.15; P = 6.94 × 10-7) and suggestive evidence that lifetime smoking exposure was associated with an increased risk of invasive epithelial ovarian cancer (OR per unit increase in smoking score: 1.36, 95% CI 1.04-1.78; P = 0.02). In analyses examining histotypes and low malignant potential tumours, the strongest associations found were between height and clear cell carcinoma (OR per SD increase: 1.36, 95% CI 1.15-1.61; P = 0.0003); age at natural menopause and endometrioid carcinoma (OR per year later onset: 1.09, 95% CI 1.02-1.16; P = 0.007); and genetic liability to polycystic ovary syndrome and endometrioid carcinoma (OR per 50% higher odds liability: 0.89, 95% CI 0.82-0.96; P = 0.002). There was little evidence for an association of genetic liability to type 2 diabetes, parity, or circulating levels of 25-hydroxyvitamin D and sex hormone binding globulin with ovarian cancer or its subtypes. The primary limitations of this analysis include the modest statistical power for analyses of risk factors in relation to some less common ovarian cancer histotypes (low grade serous, mucinous, and clear cell carcinomas), the inability to directly examine the association of some ovarian cancer risk factors that did not have robust genetic variants available to serve as proxies (e.g., oral contraceptive use, hormone replacement therapy), and the assumption of linear relationships between risk factors and ovarian cancer risk. CONCLUSIONS: Our comprehensive examination of possible aetiological drivers of ovarian carcinogenesis using germline genetic variants to proxy risk factors supports a role for few of these factors in invasive epithelial ovarian cancer overall and suggests distinct aetiologies across histotypes. The identification of novel risk factors remains an important priority for the prevention of epithelial ovarian cancer.

5.
Artigo em Inglês | MEDLINE | ID: mdl-31315910

RESUMO

BACKGROUND: The 5-year mortality rate for pancreatic cancer is amongst the highest of all cancers. Greater understanding of underlying causes could inform population-wide intervention strategies for prevention. Summary genetic data from genome-wide association studies (GWAS) have become available for thousands of phenotypes. These data can be exploited in Mendelian randomization (MR) phenome-wide association studies (PheWAS) to efficiently screen the phenome for potential determinants of disease risk. METHODS: We conducted an MR-PheWAS of pancreatic cancer using 486 phenotypes, proxied by 9124 genetic variants, and summary genetic data from a GWAS of pancreatic cancer (7,110 cancer cases; 7,264 controls). Odds ratios and 95% confidence intervals per 1 SD increase in each phenotype were generated. RESULTS: We found evidence that previously reported risk factors of body mass index (1.46; 1.20 to 1.78) and hip circumference (1.42; 1.21 to 1.67) were associated with pancreatic cancer. We also found evidence of novel associations with metabolites that have not previously been implicated in pancreatic cancer: fibrinogen-cleavage peptide (1.60; 1.31 to 1.95) and O-sulfo-L-tyrosine (0.58; 0.46 to 0.74). An inverse association was also observed with lung adenocarcinoma (0.63; 0.54 to 0.74). CONCLUSIONS: Markers of adiposity (BMI and hip circumference) are potential intervention targets for pancreatic cancer prevention. Further clarification of the causal relevance of fibrinogen cleavage peptides and O-sulfo-L-tyrosine in pancreatic cancer aetiology is required, as is the basis of our observed association with lung adenocarcinoma. IMPACT: For pancreatic cancer, MR-PheWAS can augment existing risk factor knowledge and generate novel hypotheses to investigate.

6.
Clin Epigenetics ; 11(1): 97, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262328

RESUMO

BACKGROUND: Maternal smoking during pregnancy is associated with adverse offspring health outcomes across their life course. We hypothesize that DNA methylation is a potential mediator of this relationship. METHODS: We examined the association of prenatal maternal smoking with offspring blood DNA methylation in 2821 individuals (age 16 to 48 years) from five prospective birth cohort studies and perform Mendelian randomization and mediation analyses to assess whether methylation markers have causal effects on disease outcomes in the offspring. RESULTS: We identify 69 differentially methylated CpGs in 36 genomic regions (P value < 1 × 10-7) associated with exposure to maternal smoking in adolescents and adults. Mendelian randomization analyses provided evidence for a causal role of four maternal smoking-related CpG sites on an increased risk of inflammatory bowel disease or schizophrenia. Further mediation analyses showed some evidence of cg25189904 in GNG12 gene mediating the effect of exposure to maternal smoking on schizophrenia-related outcomes. CONCLUSIONS: DNA methylation may represent a biological mechanism through which maternal smoking is associated with increased risk of psychiatric morbidity in the exposed offspring.

7.
Int J Epidemiol ; 48(3): 887-898, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31257439

RESUMO

BACKGROUND: There is mounting evidence that our environment and lifestyle has an impact on epigenetic regulatory mechanisms, such as DNA methylation. It has been suggested that these molecular processes may mediate the effect of risk factors on disease susceptibility, although evidence in this regard has been challenging to uncover. Using genetic variants as surrogate variables, we have used two-sample Mendelian randomization (2SMR) to investigate the potential implications of putative changes to DNA methylation levels on disease susceptibility. METHODS: To illustrate our approach, we identified 412 CpG sites where DNA methylation was associated with prenatal smoking. We then applied 2SMR to investigate potential downstream effects of these putative changes on 643 complex traits using findings from large-scale genome-wide association studies. To strengthen evidence of mediatory mechanisms, we used multiple-trait colocalization to assess whether DNA methylation, nearby gene expression and complex trait variation were all influenced by the same causal genetic variant. RESULTS: We identified 22 associations that survived multiple testing (P < 1.89 × 10-7). In-depth follow-up analyses of particular note suggested that the associations between DNA methylation at the ASPSCR1 and REST/POL2RB gene regions, both linked with reduced lung function, may be mediated by changes in gene expression. We validated associations between DNA methylation and traits using independent samples from different stages across the life course. CONCLUSION: Our approach should prove valuable in prioritizing CpG sites that may mediate the effect of causal risk factors on disease. In-depth evaluations of findings are necessary to robustly disentangle causality from alternative explanations such as horizontal pleiotropy.

8.
BMJ ; 365: l2327, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243001

RESUMO

OBJECTIVE: To examine whether sleep traits have a causal effect on risk of breast cancer. DESIGN: Mendelian randomisation study. SETTING: UK Biobank prospective cohort study and Breast Cancer Association Consortium (BCAC) case-control genome-wide association study. PARTICIPANTS: 156 848 women in the multivariable regression and one sample mendelian randomisation (MR) analysis in UK Biobank (7784 with a breast cancer diagnosis) and 122 977 breast cancer cases and 105 974 controls from BCAC in the two sample MR analysis. EXPOSURES: Self reported chronotype (morning or evening preference), insomnia symptoms, and sleep duration in multivariable regression, and genetic variants robustly associated with these sleep traits. MAIN OUTCOME MEASURE: Breast cancer diagnosis. RESULTS: In multivariable regression analysis using UK Biobank data on breast cancer incidence, morning preference was inversely associated with breast cancer (hazard ratio 0.95, 95% confidence interval 0.93 to 0.98 per category increase), whereas there was little evidence for an association between sleep duration and insomnia symptoms. Using 341 single nucleotide polymorphisms (SNPs) associated with chronotype, 91 SNPs associated with sleep duration, and 57 SNPs associated with insomnia symptoms, one sample MR analysis in UK Biobank provided some supportive evidence for a protective effect of morning preference on breast cancer risk (0.85, 0.70, 1.03 per category increase) but imprecise estimates for sleep duration and insomnia symptoms. Two sample MR using data from BCAC supported findings for a protective effect of morning preference (inverse variance weighted odds ratio 0.88, 95% confidence interval 0.82 to 0.93 per category increase) and adverse effect of increased sleep duration (1.19, 1.02 to 1.39 per hour increase) on breast cancer risk (both oestrogen receptor positive and oestrogen receptor negative), whereas evidence for insomnia symptoms was inconsistent. Results were largely robust to sensitivity analyses accounting for horizontal pleiotropy. CONCLUSIONS: Findings showed consistent evidence for a protective effect of morning preference and suggestive evidence for an adverse effect of increased sleep duration on breast cancer risk.


Assuntos
Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etiologia , Sono , Adulto , Idoso , Estudos de Casos e Controles , Ritmo Circadiano , Comorbidade , Fatores de Confusão (Epidemiologia) , Feminino , Estudo de Associação Genômica Ampla , Humanos , Incidência , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Análise Multivariada , Estudos Prospectivos , Fatores de Risco , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Fatores de Tempo , Reino Unido/epidemiologia
9.
Hypertension ; 74(2): 375-383, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31230546

RESUMO

Hypertensive disorders of pregnancy (HDP) are associated with low birth weight, shorter gestational age, and increased risk of maternal and offspring cardiovascular diseases later in life. The mechanisms involved are poorly understood, but epigenetic regulation of gene expression may play a part. We performed meta-analyses in the Pregnancy and Childhood Epigenetics Consortium to test the association between either maternal HDP (10 cohorts; n=5242 [cases=476]) or preeclampsia (3 cohorts; n=2219 [cases=135]) and epigenome-wide DNA methylation in cord blood using the Illumina HumanMethylation450 BeadChip. In models adjusted for confounders, and with Bonferroni correction, HDP and preeclampsia were associated with DNA methylation at 43 and 26 CpG sites, respectively. HDP was associated with higher methylation at 27 (63%) of the 43 sites, and across all 43 sites, the mean absolute difference in methylation was between 0.6% and 2.6%. Epigenome-wide associations of HDP with offspring DNA methylation were modestly consistent with the equivalent epigenome-wide associations of preeclampsia with offspring DNA methylation (R2=0.26). In longitudinal analyses conducted in 1 study (n=108 HDP cases; 550 controls), there were similar changes in DNA methylation in offspring of those with and without HDP up to adolescence. Pathway analysis suggested that genes located at/near HDP-associated sites may be involved in developmental, embryogenesis, or neurological pathways. HDP is associated with offspring DNA methylation with potential relevance to development.

10.
Thorax ; 74(7): 633-642, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30936389

RESUMO

INTRODUCTION: Males have a higher prevalence of asthma in childhood, whereas females have a higher prevalence in adolescence and adulthood. The 'adolescent switch' observed between sexes during puberty has been hypothesised to be due to fluctuating sex hormones. Robust evidence of the involvement of sex hormones in asthma could lead to development of therapeutic interventions. METHODS: We combine observational evidence using longitudinal data on sex hormone-binding globulin (SHBG), total and bioavailable testosterone and asthma from a subset of males (n=512) in the Avon Longitudinal Study of Parents and Children, and genetic evidence of SHBG and asthma using two-sample Mendelian randomisation (MR), a method of causal inference. We meta-analysed two-sample MR results across two large data sets, the Trans-National Asthma Genetics Consortium genome-wide association study of asthma and UK Biobank (over 460 000 individuals combined). RESULTS: Observational evidence indicated weak evidence of a protective effect of increased circulating testosterone on asthma in males in adolescence, but no strong pattern of association with SHBG. Genetic evidence using two-sample MR indicated a protective effect of increased SHBG, with an OR for asthma of 0.86 (95% CI 0.74 to 1.00) for the inverse-variance weighted approach and an OR of 0.83 (95% CI 0.72 to 0.96) for the weighted median estimator, per unit increase in natural log SHBG. A sex-stratified sensitivity analysis suggested the protective effect of SHBG was mostly evident in females. CONCLUSION: We report the first suggestive evidence of a protective effect of genetically elevated SHBG on asthma, which may provide a biological explanation behind the observed asthma sex discordance. Further work is required to disentangle the downstream effects of SHBG on asthma and the molecular pathways involved.

11.
Biol Psychiatry ; 85(10): 838-849, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30905381

RESUMO

BACKGROUND: Exposure to early-life adversity is known to predict DNA methylation (DNAm) patterns that may be related to psychiatric risk. However, few studies have investigated whether adversity has time-dependent effects based on the age at exposure. METHODS: Using a two-stage structured life course modeling approach, we tested the hypothesis that there are sensitive periods when adversity induces greater DNAm changes. We tested this hypothesis in relation to two alternatives: an accumulation hypothesis, in which the effect of adversity increases with the number of occasions exposed, regardless of timing; and a recency model, in which the effect of adversity is stronger for more proximal events. Data came from the Accessible Resource for Integrated Epigenomic Studies, a subsample of mother-child pairs from the Avon Longitudinal Study of Parents and Children (n = 691-774). RESULTS: After covariate adjustment and multiple testing correction, we identified 38 CpG sites that were differentially methylated at 7 years of age following exposure to adversity. Most loci (n = 35) were predicted by the timing of adversity, namely exposures before 3 years of age. Neither the accumulation nor recency of the adversity explained considerable variability in DNAm. A standard epigenome-wide association study of lifetime exposure (vs. no exposure) failed to detect these associations. CONCLUSIONS: The developmental timing of adversity explains more variability in DNAm than the accumulation or recency of exposure. Very early childhood appears to be a sensitive period when exposure to adversity predicts differential DNAm patterns. Classification of individuals as exposed versus unexposed to early-life adversity may dilute observed effects.

12.
Genes (Basel) ; 10(3)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30832291

RESUMO

The recent focus on the role of epigenetic mechanisms in mental health has led to several studies examining the association of epigenetic processes with psychiatric conditions and neurodevelopmental traits. Some studies suggest that epigenetic changes might be causal in the development of the psychiatric condition under investigation. However, other scenarios are possible, e.g., statistical confounding or reverse causation, making it particularly challenging to derive conclusions on causality. In the present review, we examine the evidence from human population studies for a possible role of epigenetic mechanisms in neurodevelopment and mental health and discuss methodological approaches on how to strengthen causal inference, including the need for replication, (quasi-)experimental approaches and Mendelian randomization. We signpost openly accessible resources (e.g., "MR-Base" "EWAS catalog" as well as tissue-specific methylation and gene expression databases) to aid the application of these approaches.

13.
Transl Psychiatry ; 9(1): 105, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30820025

RESUMO

Integrative approaches that harness large-scale molecular datasets can help develop mechanistic insight into findings from genome-wide association studies (GWAS). We have performed extensive analyses to uncover transcriptional and epigenetic processes which may play a role in complex trait variation. This was undertaken by applying Bayesian multiple-trait colocalization systematically across the genome to identify genetic variants responsible for influencing intermediate molecular phenotypes as well as complex traits. In this analysis, we leveraged high-dimensional quantitative trait loci data derived from the prefrontal cortex tissue (concerning gene expression, DNA methylation and histone acetylation) and GWAS findings for five complex traits (Neuroticism, Schizophrenia, Educational Attainment, Insomnia and Alzheimer's disease). There was evidence of colocalization for 118 associations, suggesting that the same underlying genetic variant influenced both nearby gene expression as well as complex trait variation. Of these, 73 associations provided evidence that the genetic variant also influenced proximal DNA methylation and/or histone acetylation. These findings support previous evidence at loci where epigenetic mechanisms may putatively mediate effects of genetic variants on traits, such as KLC1 and schizophrenia. We also uncovered evidence implicating novel loci in disease susceptibility, including genes expressed predominantly in the brain tissue, such as MDGA1, KIRREL3 and SLC12A5. An inverse relationship between DNA methylation and gene expression was observed more than can be accounted for by chance, supporting previous findings implicating DNA methylation as a transcriptional repressor. Our study should prove valuable in helping future studies prioritize candidate genes and epigenetic mechanisms for in-depth functional follow-up analyses.

15.
Genome Med ; 11(1): 6, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30704512

RESUMO

BACKGROUND: The extent to which changes in gene expression can influence cardiovascular disease risk across different tissue types has not yet been systematically explored. We have developed an analysis pipeline that integrates tissue-specific gene expression, Mendelian randomization and multiple-trait colocalization to develop functional mechanistic insight into the causal pathway from a genetic variant to a complex trait. METHODS: We undertook an expression quantitative trait loci-wide association study to uncover genetic variants associated with both nearby gene expression and cardiovascular traits. Fine-mapping was performed to prioritize possible causal variants for detected associations. Two-sample Mendelian randomization (MR) was then applied using findings from genome-wide association studies (GWAS) to investigate whether changes in gene expression within certain tissue types may influence cardiovascular trait variation. We subsequently used Bayesian multiple-trait colocalization to further interrogate the findings and also gain insight into whether DNA methylation, as well as gene expression, may play a role in disease susceptibility. Finally, we applied our analysis pipeline genome-wide using summary statistics from large-scale GWAS. RESULTS: Eight genetic loci were associated with changes in gene expression and measures of cardiovascular function. Our MR analysis provided evidence of tissue-specific effects at multiple loci, of which the effects at the ADCY3 and FADS1 loci for body mass index and cholesterol, respectively, were particularly insightful. Multiple-trait colocalization uncovered evidence which suggested that changes in DNA methylation at the promoter region upstream of FADS1/TMEM258 may also affect cardiovascular trait variation along with gene expression. Furthermore, colocalization analyses uncovered evidence of tissue specificity between gene expression in liver tissue and cholesterol levels. Applying our pipeline genome-wide using summary statistics from GWAS uncovered 233 association signals at loci which represent promising candidates for further evaluation. CONCLUSIONS: Disease susceptibility can be influenced by differential changes in tissue-specific gene expression and DNA methylation. The approach undertaken in our study can be used to elucidate mechanisms in disease, as well as helping prioritize putative causal genes at associated loci where multiple nearby genes may be co-regulated. Future studies which continue to uncover quantitative trait loci for molecular traits across various tissue and cell types will further improve our capability to understand and prevent disease.


Assuntos
Doenças Cardiovasculares/genética , Predisposição Genética para Doença , Análise da Randomização Mendeliana/métodos , Criança , Metilação de DNA , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Fígado/metabolismo , Masculino , Especificidade de Órgãos , Regiões Promotoras Genéticas
16.
Clin Epigenetics ; 11(1): 31, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777123

RESUMO

BACKGROUND: Maternal blood folate concentrations during pregnancy have been previously linked with DNA methylation patterns, but this has been done predominantly through observational studies. We showed recently in an epigenetic analysis of the first randomized controlled trial (RCT) of folic acid supplementation specifically in the second and third trimesters (the EpiFASSTT trial) that methylation at some imprinted genes was altered in cord blood samples in response to treatment. Here, we report on epigenome-wide screening using the Illumina EPIC array (~ 850,000 sites) in these same samples (n = 86). RESULTS: The top-ranked differentially methylated promoter region (DMR) showed a gain in methylation with folic acid (FA) and was located upstream of the imprint regulator ZFP57. Differences in methylation in cord blood between placebo and folic acid treatment groups at this DMR were verified using pyrosequencing. The DMR also gains methylation in maternal blood in response to FA supplementation. We also found evidence of differential methylation at this region in an independent RCT cohort, the AFAST trial. By altering methylation at this region in two model systems in vitro, we further demonstrated that it was associated with ZFP57 transcription levels. CONCLUSIONS: These results strengthen the link between folic acid supplementation during later pregnancy and epigenetic changes and identify a novel mechanism for regulation of ZFP57. This trial was registered 15 May 2013 at www.isrctn.com as ISRCTN19917787.


Assuntos
Metilação de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Ácido Fólico/administração & dosagem , Segundo Trimestre da Gravidez/genética , Terceiro Trimestre da Gravidez/genética , Fatores de Transcrição/genética , Adulto , Interação do Duplo Vínculo , Feminino , Ácido Fólico/sangue , Impressão Genômica , Células HCT116 , Humanos , Gravidez , Segundo Trimestre da Gravidez/sangue , Segundo Trimestre da Gravidez/efeitos dos fármacos , Terceiro Trimestre da Gravidez/sangue , Terceiro Trimestre da Gravidez/efeitos dos fármacos , Análise de Sequência de DNA
17.
Int J Cancer ; 145(11): 2933-2943, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30740682

RESUMO

The aetiology of childhood acute lymphoblastic leukaemia (ALL) is unclear. Genetic abnormalities have been identified in a number of ALL cases, although these alone are not sufficient for leukaemic transformation. Various in utero and post-natal environmental exposures have been suggested to alter risk of childhood ALL. DNA methylation patterns can be influenced by environmental exposures, and are reported to be altered in ALL, suggesting a potential mediating mechanism between environment and ALL disease risk. To investigate this, we used a 'meet in the middle' approach, investigating the overlap between exposure-associated and disease-associated methylation change. Genome-wide DNA methylation changes in response to possible ALL-risk exposures (i.e. breast feeding, infection history, day care attendance, maternal smoking, alcohol, caffeine, folic acid, iron and radiation exposure) were investigated in a sub-population of the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort using an epigenome-wide association study (EWAS) approach (n = 861-927), and compared to a list of ALL disease-associated methylation changes compiled from published data. Hypergeometric probability tests suggested that the number of directionally concordant gene methylation changes observed in ALL disease and in response to the following exposures; maternal radiation exposure (p = 0.001), alcohol intake (p = 0.006); sugary caffeinated drink intake during pregnancy (p = 0.045); and infant day care attendance (p = 0.003), were not due to chance. Data presented suggests that DNA methylation may be one mediating mechanism in the multiple hit pathway needed for ALL disease manifestation.

18.
Eur Respir J ; 53(4)2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30765504

RESUMO

RATIONALE: We aimed to identify differentially methylated regions (DMRs) in cord blood DNA associated with childhood lung function, asthma and chronic obstructive pulmonary disease (COPD) across the life course. METHODS: We meta-analysed epigenome-wide data of 1688 children from five cohorts to identify cord blood DMRs and their annotated genes, in relation to forced expiratory volume in 1 s (FEV1), FEV1/forced vital capacity (FVC) ratio and forced expiratory flow at 75% of FVC at ages 7-13 years. Identified DMRs were explored for associations with childhood asthma, adult lung function and COPD, gene expression and involvement in biological processes. RESULTS: We identified 59 DMRs associated with childhood lung function, of which 18 were associated with childhood asthma and nine with COPD in adulthood. Genes annotated to the top 10 identified DMRs were HOXA5, PAOX, LINC00602, ABCA7, PER3, CLCA1, VENTX, NUDT12, PTPRN2 and TCL1A. Differential gene expression in blood was observed for 32 DMRs in childhood and 18 in adulthood. Genes related with 16 identified DMRs were associated with respiratory developmental or pathogenic pathways. INTERPRETATION: Our findings suggest that the epigenetic status of the newborn affects respiratory health and disease across the life course.

19.
Epigenetics ; 14(4): 325-340, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30773972

RESUMO

Pre-pregnancy obesity is an established risk factor for adverse sex-specific cardiometabolic health in offspring. Epigenetic alterations, such as in DNA methylation (DNAm), are a hypothesized link; however, sex-specific epigenomic targets remain unclear. Leveraging data from the Newborn Epigenetics Study (NEST) cohort, linear regression models were used to identify CpG sites in cord blood leukocytes associated with pre-pregnancy obesity in 187 mother-female and 173 mother-male offsprings. DNAm in cord blood was measured using the Illumina HumanMethylation450k BeadChip. Replication analysis was conducted among the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Associations between pre-pregnancy obesity-associated CpG sites and offspring BMI z-score (BMIz) and blood pressure (BP) percentiles at 4-5-years of age were also examined. Maternal pre-pregnacy obesity was associated with 876 CpGs in female and 293 CpGs in male offspring (false discovery rate <5%). Among female offspring, 57 CpG sites, including the top 18, mapped to the TAPBP gene (range of effect estimates: -0.83% decrease to 4.02% increase in methylation). CpG methylation differences in the TAPBP gene were also observed among males (range of effect estimates: -0.30% decrease to 2.59% increase in methylation). While technically validated, none of the TAPBP CpG sites were replicated in ALSPAC. In NEST, methylation differences at CpG sites of the TAPBP gene were associated with BMI z-score (cg23922433 and cg17621507) and systolic BP percentile (cg06230948) in female and systolic (cg06230948) and diastolic (cg03780271) BP percentile in male offspring. Together, these findings suggest sex-specific effects, which, if causal, may explain observed sex-specific effects of maternal obesity.

20.
Diabetes Res Clin Pract ; 148: 189-199, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30641161

RESUMO

AIMS: Epigenetic mechanisms regulate gene expression and may influence the pathogenesis of type 2 diabetes through the loss of insulin sensitivity. The aims of this study were to measure variation in DNA methylation at the type 2 diabetes locus KCNQ1 and assess its relationship with metabolic measures and with genotype. METHODS: DNA methylation from whole blood DNA was quantified using pyrosequencing at 5 CpG sites at the KCNQ1 locus in 510 individuals without diabetes from the 'Relationship between Insulin Sensitivity and Cardiovascular disease' (RISC) cohort. Genotype data was analysed at the same locus in 1119 individuals in the same cohort. Insulin sensitivity was assessed by euglycaemic-hyperinsulinaemic clamp. RESULTS: DNA methylation at the KCNQ1 locus was inversely associated with insulin sensitivity and serum adiponectin. This association was driven by a methylation-altering Single Nucleotide Polymorphism (SNP) (rs231840) which ablated a methylation site and reduced methylation levels. A second SNP (rs231357), in weak Linkage Disequilibrium (LD) with rs231840, was also associated with insulin sensitivity and DNA methylation. These SNPs have not been previously reported to be associated with type 2 diabetes risk or insulin sensitivity. CONCLUSION: Evidence indicates that genetic and epigenetic determinants at the KCNQ1 locus influence insulin sensitivity.


Assuntos
Ilhas de CpG/efeitos dos fármacos , Ilhas de CpG/genética , Metilação de DNA , Diabetes Mellitus Tipo 2/genética , Loci Gênicos/genética , Resistência à Insulina/genética , Canal de Potássio KCNQ1/genética , Adulto , Estudos de Coortes , Análise Mutacional de DNA/métodos , Epigênese Genética/fisiologia , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA