Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Clin Nutr ; 41(9): 1991-2002, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35964423

RESUMO

BACKGROUND & AIMS: Maternal diet during pregnancy is a modifiable behaviour which plays an important role in maternal, neonatal and child health outcomes. Thus, knowledge of predictors of dietary quality and dietary inflammatory potential in European countries may contribute to developing maternal diet-related public health policies that target specific at-risk populations in Europe. METHODS: We used harmonised data from >26,000 pregnant women enrolled in the ALSPAC, EDEN, Generation R, Lifeways, REPRO_PL, ROLO and SWS cohorts, as part of the ALPHABET consortium. Maternal dietary quality and inflammatory potential were assessed using the Dietary Approaches to Stop Hypertension (DASH) and the energy-adjusted Dietary Inflammatory Index (E-DII). We conducted an individual participant data meta-analysis to investigate the maternal sociodemographic, health and behavioural predictors of maternal diet before and during pregnancy. RESULTS: DASH and E-DII scores were moderately correlated: from -0.63 (95% CI: -0.66, -0.59) to -0.48 (95% CI: -0.49, -0.47) across cohorts. Higher maternal age, education, household income, and physical activity during pregnancy were associated with a better dietary quality and a more anti-inflammatory diet. Conversely, multiparity and smoking during pregnancy were associated with a poorer dietary quality and a more proinflammatory diet. Women with obesity had a poorer pregnancy dietary quality than women with a normal body mass index range. CONCLUSIONS: The results will help identify population subgroups who may benefit from targeted public health strategies and interventions aimed at improving women's dietary quality during pregnancy.


Assuntos
Abordagens Dietéticas para Conter a Hipertensão , Complicações na Gravidez , Criança , Dieta , Feminino , Humanos , Recém-Nascido , Inflamação , Obesidade , Gravidez , Complicações na Gravidez/epidemiologia
2.
Psychoneuroendocrinology ; 144: 105854, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35914392

RESUMO

BACKGROUND: Sensitive periods are developmental stages of heightened plasticity when life experiences, including exposure to childhood adversity, have the potential to exert more lasting impacts. Epigenetic mechanisms, including DNA methylation (DNAm), may provide a pathway through which adversity induces long-term biological changes. DNAm shifts may be more likely to occur during sensitive periods, especially within genes that regulate the timing of sensitive periods. Here, we investigated the possibility that childhood adversity during specific life stages is associated with DNAm changes in genes known to regulate the timing and duration of sensitive periods. METHODS: Genome-wide DNAm profiles came from the Avon Longitudinal Study of Parents and Children (n = 785). We first used principal component analysis (PCA) to summarize DNAm variation across 530 CpG sites mapped to the promoters of 58 genes previously-identified as regulating sensitive periods. Gene-level DNAm summaries were calculated for genes regulating sensitive period opening (ngenes = 15), closing (ngenes = 36), and expression (ngenes = 8). We then performed linear discriminant analysis (LDA) to test associations between seven types of parent-reported, time-varying measures of exposure to childhood adversity and DNAm principal components. To our knowledge, this is the first time LDA has been applied to analyze functionally grouped DNAm data to characterize associations between an environmental exposure and epigenetic differences. RESULTS: Suggestive evidence emerged for associations between sexual or physical abuse as well as financial hardship during middle childhood, and DNAm of genetic pathways regulating sensitive period opening and expression. However, no statistically significant associations were identified after multiple testing correction. CONCLUSIONS: Our gene set-based method combining PCA and LDA complements epigenome-wide approaches. Although our results were largely null, these findings provide a proof-of-concept for studying time-varying exposures and gene- or pathway-level epigenetic modifications.


Assuntos
Experiências Adversas da Infância , Criança , Metilação de DNA/genética , Epigênese Genética/genética , Humanos , Estudos Longitudinais
3.
Clin Epigenetics ; 14(1): 83, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790973

RESUMO

BACKGROUND: Sleep is important for healthy functioning in children. Numerous genetic and environmental factors, from conception onwards, may influence this phenotype. Epigenetic mechanisms such as DNA methylation have been proposed to underlie variation in sleep or may be an early-life marker of sleep disturbances. We examined if DNA methylation at birth or in school age is associated with parent-reported and actigraphy-estimated sleep outcomes in children. METHODS: We meta-analysed epigenome-wide association study results. DNA methylation was measured from cord blood at birth in 11 cohorts and from peripheral blood in children (4-13 years) in 8 cohorts. Outcomes included parent-reported sleep duration, sleep initiation and fragmentation problems, and actigraphy-estimated sleep duration, sleep onset latency and wake-after-sleep-onset duration. RESULTS: We found no associations between DNA methylation at birth and parent-reported sleep duration (n = 3658), initiation problems (n = 2504), or fragmentation (n = 1681) (p values above cut-off 4.0 × 10-8). Lower methylation at cg24815001 and cg02753354 at birth was associated with longer actigraphy-estimated sleep duration (p = 3.31 × 10-8, n = 577) and sleep onset latency (p = 8.8 × 10-9, n = 580), respectively. DNA methylation in childhood was not cross-sectionally associated with any sleep outcomes (n = 716-2539). CONCLUSION: DNA methylation, at birth or in childhood, was not associated with parent-reported sleep. Associations observed with objectively measured sleep outcomes could be studied further if additional data sets become available.


Assuntos
Metilação de DNA , Transtornos do Sono-Vigília , Epigênese Genética , Epigenoma , Humanos , Sono/genética , Transtornos do Sono-Vigília/genética
4.
J Bone Miner Res ; 37(8): 1511-1519, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35689423

RESUMO

Systemic inflammation is associated with reduced bone mineral density and may be influenced by pro-inflammatory diets. We undertook an observational analysis of associations between late pregnancy energy-adjusted dietary inflammatory index (E-DII) scores and offspring bone outcomes in childhood. E-DII scores (higher scores indicating pro-inflammatory diets) were derived from food frequency questionnaires in late pregnancy in two prospective mother-offspring cohorts: the Southampton Women's Survey (SWS) and the Avon Longitudinal Study of Parents and Children (ALSPAC). The mean (SD) offspring age at dual-energy X-ray absorptiometry (DXA) scanning was 9.2 (0.2) years. Linear regression was used to assess associations between E-DII and bone outcomes, adjusting for offspring sex and age at DXA and maternal age at childbirth, educational level, pre-pregnancy body mass index (BMI), parity, physical activity level, and smoking in pregnancy. Associations were synthesized using fixed-effect meta-analysis. Beta coefficients represent the association per unit E-DII increment. In fully adjusted models (total n = 5910) late pregnancy E-DII was negatively associated with offspring whole body minus head bone area (BA: ß = -3.68 [95% confidence interval -6.09, -1.27] cm2 /unit), bone mineral content (BMC: ß = -4.16 [95% CI -6.70, -1.62] g/unit), and areal bone mineral density (aBMD: ß = -0.0012 [95% CI -0.0020, -0.0004] g.cm-2 /unit), but there was only a weak association with BMC adjusted for BA (ß = -0.48 [95% CI -1.11, 0.15] g/unit) at 9 years. Adjustment for child height partly or, for weight, fully attenuated the associations. Higher late pregnancy E-DII scores (representing a more pro-inflammatory diet) are negatively associated with offspring bone measures, supporting the importance of maternal and childhood diet on longitudinal offspring bone health. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Densidade Óssea , Dieta , Absorciometria de Fóton , Criança , Feminino , Humanos , Estudos Longitudinais , Pais , Gravidez , Estudos Prospectivos , Inquéritos e Questionários
5.
Wellcome Open Res ; 7: 41, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592546

RESUMO

Epigenome-wide association studies (EWAS) seek to quantify associations between traits/exposures and DNA methylation measured at thousands or millions of CpG sites across the genome. In recent years, the increase in availability of DNA methylation measures in population-based cohorts and case-control studies has resulted in a dramatic expansion of the number of EWAS being performed and published. To make this rich source of results more accessible, we have manually curated a database of CpG-trait associations (with p<1x10 -4) from published EWAS, each assaying over 100,000 CpGs in at least 100 individuals. From January 7, 2022, The EWAS Catalog contained 1,737,746 associations from 2,686 EWAS. This includes 1,345,398 associations from 342 peer-reviewed publications. In addition, it also contains summary statistics for 392,348 associations from 427 EWAS, performed on data from the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Gene Expression Omnibus (GEO). The database is accompanied by a web-based tool and R package, giving researchers the opportunity to query EWAS associations quickly and easily, and gain insight into the molecular underpinnings of disease as well as the impact of traits and exposures on the DNA methylome. The EWAS Catalog data extraction team continue to update the database monthly and we encourage any EWAS authors to upload their summary statistics to our website. Details of how to upload data can be found here: http://www.ewascatalog.org/upload. The EWAS Catalog is available at http://www.ewascatalog.org.

6.
Am J Hum Genet ; 109(7): 1255-1271, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35679866

RESUMO

Osteoarthritis is a complex degenerative joint disease. Here, we investigate matched genotype and methylation profiles of primary chondrocytes from macroscopically intact (low-grade) and degraded (high-grade) osteoarthritis cartilage and from synoviocytes collected from 98 osteoarthritis-affected individuals undergoing knee replacement surgery. We perform an epigenome-wide association study of knee cartilage degeneration and report robustly replicating methylation markers, which reveal an etiologic mechanism linked to the migration of epithelial cells. Using machine learning, we derive methylation models of cartilage degeneration, which we validate with 82% accuracy in independent data. We report a genome-wide methylation quantitative trait locus (mQTL) map of articular cartilage and synovium and identify 18 disease-grade-specific mQTLs in osteoarthritis cartilage. We resolve osteoarthritis GWAS loci through causal inference and colocalization analyses and decipher the epigenetic mechanisms that mediate the effect of genotype on disease risk. Together, our findings provide enhanced insights into epigenetic mechanisms underlying osteoarthritis in primary tissues.


Assuntos
Cartilagem Articular , Osteoartrite , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Metilação de DNA/genética , Epigenoma , Humanos , Osteoartrite/genética , Osteoartrite/metabolismo
7.
EBioMedicine ; 79: 104000, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35490552

RESUMO

BACKGROUND: DNA methylation (DNAm) is associated with time-varying environmental factors that contribute to major depressive disorder (MDD) risk. We sought to test whether DNAm signatures of lifestyle and biochemical factors were associated with MDD to reveal dynamic biomarkers of MDD risk that may be amenable to lifestyle interventions. METHODS: Here, we calculated methylation scores (MS) at multiple p-value thresholds for lifestyle (BMI, smoking, alcohol consumption, and educational attainment) and biochemical (high-density lipoprotein (HDL) and total cholesterol) factors in Generation Scotland (GS) (N=9,502) and in a replication cohort (ALSPACadults, N=565), using CpG sites reported in previous well-powered methylome-wide association studies. We also compared their predictive accuracy for MDD to a MDD MS in an independent GS sub-sample (N=4,432). FINDINGS: Each trait MS was significantly associated with its corresponding phenotype in GS (ßrange=0.089-1.457) and in ALSPAC (ßrange=0.078-2.533). Each MS was also significantly associated with MDD before and after adjustment for its corresponding phenotype in GS (ßrange=0.053-0.145). After accounting for relevant lifestyle factors, MS for educational attainment (ß=0.094) and alcohol consumption (MSp-value<0.01-0.5; ßrange=-0.069-0.083) remained significantly associated with MDD in GS. Smoking (AUC=0.569) and educational attainment (AUC=0.585) MSs could discriminate MDD from controls better than the MDD MS (AUC=0.553) in the independent GS sub-sample. Analyses implicating MDD did not replicate across ALSPAC, although the direction of effect was consistent for all traits when adjusting for the MS corresponding phenotypes. INTERPRETATION: We showed that lifestyle and biochemical MS were associated with MDD before and after adjustment for their corresponding phenotypes (pnominal<0.05), but not when smoking, alcohol consumption, and BMI were also included as covariates. MDD results did not replicate in the smaller, female-only independent ALSPAC cohort (NALSPAC=565; NGS=9,502), potentially due to demographic differences or low statistical power, but effect sizes were consistent with the direction reported in GS. DNAm scores for modifiable MDD risk factors may contribute to disease vulnerability and, in some cases, explain additional variance to their observed phenotypes. FUNDING: Wellcome Trust.


Assuntos
Transtorno Depressivo Maior , Herança Multifatorial , Estudos de Coortes , Metilação de DNA , Transtorno Depressivo Maior/etiologia , Transtorno Depressivo Maior/genética , Epigenoma , Feminino , Estudo de Associação Genômica Ampla , Humanos
8.
Sci Rep ; 12(1): 5606, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379837

RESUMO

Handedness has low heritability and epigenetic mechanisms have been proposed as an etiological mechanism. To examine this hypothesis, we performed an epigenome-wide association study of left-handedness. In a meta-analysis of 3914 adults of whole-blood DNA methylation, we observed that CpG sites located in proximity of handedness-associated genetic variants were more strongly associated with left-handedness than other CpG sites (P = 0.04), but did not identify any differentially methylated positions. In longitudinal analyses of DNA methylation in peripheral blood and buccal cells from children (N = 1737), we observed moderately stable associations across age (correlation range [0.355-0.578]), but inconsistent across tissues (correlation range [- 0.384 to 0.318]). We conclude that DNA methylation in peripheral tissues captures little of the variance in handedness. Future investigations should consider other more targeted sources of tissue, such as the brain.


Assuntos
Metilação de DNA , Mucosa Bucal , Adulto , Criança , Ilhas de CpG , Lateralidade Funcional/genética , Estudo de Associação Genômica Ampla , Humanos
9.
Elife ; 112022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35346416

RESUMO

Background: Epigenetic clocks have been associated with cancer risk in several observational studies. Nevertheless, it is unclear whether they play a causal role in cancer risk or if they act as a non-causal biomarker. Methods: We conducted a two-sample Mendelian randomization (MR) study to examine the genetically predicted effects of epigenetic age acceleration as measured by HannumAge (nine single-nucleotide polymorphisms (SNPs)), Horvath Intrinsic Age (24 SNPs), PhenoAge (11 SNPs), and GrimAge (4 SNPs) on multiple cancers (i.e. breast, prostate, colorectal, ovarian and lung cancer). We obtained genome-wide association data for biological ageing from a meta-analysis (N = 34,710), and for cancer from the UK Biobank (N cases = 2671-13,879; N controls = 173,493-372,016), FinnGen (N cases = 719-8401; N controls = 74,685-174,006) and several international cancer genetic consortia (N cases = 11,348-122,977; N controls = 15,861-105,974). Main analyses were performed using multiplicative random effects inverse variance weighted (IVW) MR. Individual study estimates were pooled using fixed effect meta-analysis. Sensitivity analyses included MR-Egger, weighted median, weighted mode and Causal Analysis using Summary Effect Estimates (CAUSE) methods, which are robust to some of the assumptions of the IVW approach. Results: Meta-analysed IVW MR findings suggested that higher GrimAge acceleration increased the risk of colorectal cancer (OR = 1.12 per year increase in GrimAge acceleration, 95% CI 1.04-1.20, p = 0.002). The direction of the genetically predicted effects was consistent across main and sensitivity MR analyses. Among subtypes, the genetically predicted effect of GrimAge acceleration was greater for colon cancer (IVW OR = 1.15, 95% CI 1.09-1.21, p = 0.006), than rectal cancer (IVW OR = 1.05, 95% CI 0.97-1.13, p = 0.24). Results were less consistent for associations between other epigenetic clocks and cancers. Conclusions: GrimAge acceleration may increase the risk of colorectal cancer. Findings for other clocks and cancers were inconsistent. Further work is required to investigate the potential mechanisms underlying the results. Funding: FMB was supported by a Wellcome Trust PhD studentship in Molecular, Genetic and Lifecourse Epidemiology (224982/Z/22/Z which is part of grant 218495/Z/19/Z). KKT was supported by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme) and by the Hellenic Republic's Operational Programme 'Competitiveness, Entrepreneurship & Innovation' (OΠΣ 5047228). PH was supported by Cancer Research UK (C18281/A29019). RMM was supported by the NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). RMM is a National Institute for Health Research Senior Investigator (NIHR202411). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. GDS and CLR were supported by the Medical Research Council (MC_UU_00011/1 and MC_UU_00011/5, respectively) and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). REM was supported by an Alzheimer's Society project grant (AS-PG-19b-010) and NIH grant (U01 AG-18-018, PI: Steve Horvath). RCR is a de Pass Vice Chancellor's Research Fellow at the University of Bristol.


Have you noticed that some people seem to get older faster than others? Scientists have previously found that a chemical tag on DNA known as DNA methylation can be used to predict an individual's chronological age. However, age predicted using DNA methylation (also known as biological or epigenetic age) does not always perfectly correspond to chronological age. Indeed, some people's biological age is higher than their years, while other people's is lower. When an individual's biological age is higher than their chronological age, they are said to be experiencing 'epigenetic age acceleration'. This type of accelerated ageing, which can be measured with 'epigenetic clocks' based on DNA methylation, has been associated with several adverse health outcomes, including cancer. This means that epigenetic clocks may improve our ability to predict cancer risk and detect cancer early. However, it is still unclear whether accelerated biological ageing causes cancer, or whether it simply correlates with the disease. Morales-Berstein et al. wanted to investigate whether epigenetic age acceleration, as measured by epigenetic clocks, plays a role in the development of several cancers. To do so, they used an approach known as Mendelian randomization. Using genetic variants as natural experiments, they studied the effect of different measures of epigenetic age acceleration on cancer risk. Their work focused on five types of cancer: breast, colorectal, prostate, ovarian and lung cancer. They used genetic association data from people of European ancestry to determine whether genetic variants that are strongly associated with accelerated ageing are also strongly associated with cancer. The results showed that one of the DNA methylation markers used as an estimate of biological ageing could be directly related to the risk of developing colorectal cancer. This work provides new insights into the relationship between markers of biological ageing and cancer. Similar relationships should also be studied in other groups of people and for other cancer sites. The results suggest that reversing biological ageing by altering DNA methylation could prevent or delay the development of colorectal cancer.


Assuntos
Neoplasias Colorretais , Análise da Randomização Mendeliana , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Epigênese Genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
10.
Nat Rev Genet ; 23(6): 369-383, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35304597

RESUMO

DNA methylation data have become a valuable source of information for biomarker development, because, unlike static genetic risk estimates, DNA methylation varies dynamically in relation to diverse exogenous and endogenous factors, including environmental risk factors and complex disease pathology. Reliable methods for genome-wide measurement at scale have led to the proliferation of epigenome-wide association studies and subsequently to the development of DNA methylation-based predictors across a wide range of health-related applications, from the identification of risk factors or exposures, such as age and smoking, to early detection of disease or progression in cancer, cardiovascular and neurological disease. This Review evaluates the progress of existing DNA methylation-based predictors, including the contribution of machine learning techniques, and assesses the uptake of key statistical best practices needed to ensure their reliable performance, such as data-driven feature selection, elimination of data leakage in performance estimates and use of generalizable, adequately powered training samples.


Assuntos
Metilação de DNA , Neoplasias , Biomarcadores , Epigênese Genética , Estudo de Associação Genômica Ampla , Humanos , Neoplasias/genética
11.
Cancer Causes Control ; 33(5): 631-652, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35274198

RESUMO

Dietary factors are assumed to play an important role in cancer risk, apparent in consensus recommendations for cancer prevention that promote nutritional changes. However, the evidence in this field has been generated predominantly through observational studies, which may result in biased effect estimates because of confounding, exposure misclassification, and reverse causality. With major geographical differences and rapid changes in cancer incidence over time, it is crucial to establish which of the observational associations reflect causality and to identify novel risk factors as these may be modified to prevent the onset of cancer and reduce its progression. Mendelian randomization (MR) uses the special properties of germline genetic variation to strengthen causal inference regarding potentially modifiable exposures and disease risk. MR can be implemented through instrumental variable (IV) analysis and, when robustly performed, is generally less prone to confounding, reverse causation and measurement error than conventional observational methods and has different sources of bias (discussed in detail below). It is increasingly used to facilitate causal inference in epidemiology and provides an opportunity to explore the effects of nutritional exposures on cancer incidence and progression in a cost-effective and timely manner. Here, we introduce the concept of MR and discuss its current application in understanding the impact of nutritional factors (e.g., any measure of diet and nutritional intake, circulating biomarkers, patterns, preference or behaviour) on cancer aetiology and, thus, opportunities for MR to contribute to the development of nutritional recommendations and policies for cancer prevention. We provide applied examples of MR studies examining the role of nutritional factors in cancer to illustrate how this method can be used to help prioritise or deprioritise the evaluation of specific nutritional factors as intervention targets in randomised controlled trials. We describe possible biases when using MR, and methodological developments aimed at investigating and potentially overcoming these biases when present. Lastly, we consider the use of MR in identifying causally relevant nutritional risk factors for various cancers in different regions across the world, given notable geographical differences in some cancers. We also discuss how MR results could be translated into further research and policy. We conclude that findings from MR studies, which corroborate those from other well-conducted studies with different and orthogonal biases, are poised to substantially improve our understanding of nutritional influences on cancer. For such corroboration, there is a requirement for an interdisciplinary and collaborative approach to investigate risk factors for cancer incidence and progression.


Assuntos
Análise da Randomização Mendeliana , Neoplasias , Causalidade , Humanos , Análise da Randomização Mendeliana/métodos , Neoplasias/etiologia , Neoplasias/genética , Estado Nutricional , Fatores de Risco
12.
ERJ Open Res ; 8(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35237685

RESUMO

BACKGROUND: Age of pubertal onset is associated with lung function in adulthood. However, the underlying role of epigenetics as a mediator of this association remains unknown. METHODS: DNA methylation (DNAm) in peripheral blood was measured at age 18 years in the Isle of Wight birth cohort (IOWBC) along with data on age of pubertal events, forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) at 26 years. Structural equation models were applied to examine mediation effects of DNAm on the association of age at pubertal events with FVC and FEV1. Findings were further tested in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. RESULTS: In the IOWBC, for females, 21 cytosine-phosphate-guanine sites (CpGs) were shown to mediate the association of age at puberty with FVC or FEV1 at 26 years (p<0.05). In males, DNAm at 20 CpGs was found to mediate the association of age at puberty with FVC (p<0.05). At almost all these CpGs, indirect effects (effects of age at pubertal events on FVC or FEV1 via DNAm) contributed a smaller portion to the total effects compared to direct effects (e.g. at cg08680129, ∼22% of the estimated total effect of age at menarche on FVC at age 26 was contributed by an indirect effect). Among the IOWBC-discovered CpGs available in ALSPAC, none of them was replicated in ALSPAC (p>0.05). CONCLUSIONS: Our findings suggest that post-adolescence DNAm in peripheral blood is likely not to mediate the association of age at pubertal onset with young adulthood FVC or FEV1.

13.
Genome Med ; 14(1): 36, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35354486

RESUMO

BACKGROUND: Depression is a disabling and highly prevalent condition where genetic and epigenetic, such as DNA methylation (DNAm), differences contribute to disease risk. DNA methylation is influenced by genetic variation but the association between polygenic risk of depression and DNA methylation is unknown. METHODS: We investigated the association between polygenic risk scores (PRS) for depression and DNAm by conducting a methylome-wide association study (MWAS) in Generation Scotland (N = 8898, mean age = 49.8 years) with replication in the Lothian Birth Cohorts of 1921 and 1936 and adults in the Avon Longitudinal Study of Parents and Children (ALSPAC) (Ncombined = 2049, mean age = 79.1, 69.6 and 47.2 years, respectively). We also conducted a replication MWAS in the ALSPAC children (N = 423, mean age = 17.1 years). Gene ontology analysis was conducted for the cytosine-guanine dinucleotide (CpG) probes significantly associated with depression PRS, followed by Mendelian randomisation (MR) analysis to infer the causal relationship between depression and DNAm. RESULTS: Widespread associations (NCpG = 71, pBonferroni < 0.05, p < 6.3 × 10-8) were found between PRS constructed using genetic risk variants for depression and DNAm in CpG probes that localised to genes involved in immune responses and neural development. The effect sizes for the significant associations were highly correlated between the discovery and replication samples in adults (r = 0.79) and in adolescents (r = 0.82). Gene Ontology analysis showed that significant CpG probes are enriched in immunological processes in the human leukocyte antigen system. Additional MWAS was conducted for each lead genetic risk variant. Over 47.9% of the independent genetic risk variants included in the PRS showed associations with DNAm in CpG probes located in both the same (cis) and distal (trans) locations to the genetic loci (pBonferroni < 0.045). Subsequent MR analysis showed that there are a greater number of causal effects found from DNAm to depression than vice versa (DNAm to depression: pFDR ranged from 0.024 to 7.45 × 10-30; depression to DNAm: pFDR ranged from 0.028 to 0.003). CONCLUSIONS: PRS for depression, especially those constructed from genome-wide significant genetic risk variants, showed methylome-wide differences associated with immune responses. Findings from MR analysis provided evidence for causal effect of DNAm to depression.


Assuntos
Apresentação de Antígeno , Epigenoma , Adolescente , Adulto , Criança , Depressão/genética , Humanos , Estudos Longitudinais , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Fatores de Risco
14.
Mol Psychiatry ; 27(4): 2126-2135, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35145228

RESUMO

Cognitive skills are a strong predictor of a wide range of later life outcomes. Genetic and epigenetic associations across the genome explain some of the variation in general cognitive abilities in the general population and it is plausible that epigenetic associations might arise from prenatal environmental exposures and/or genetic variation early in life. We investigated the association between cord blood DNA methylation at birth and cognitive skills assessed in children from eight pregnancy cohorts within the Pregnancy And Childhood Epigenetics (PACE) Consortium across overall (total N = 2196), verbal (total N = 2206) and non-verbal cognitive scores (total N = 3300). The associations at single CpG sites were weak for all of the cognitive domains investigated. One region near DUSP22 on chromosome 6 was associated with non-verbal cognition in a model adjusted for maternal IQ. We conclude that there is little evidence to support the idea that variation in cord blood DNA methylation at single CpG sites is associated with cognitive skills and further studies are needed to confirm the association at DUSP22.


Assuntos
Metilação de DNA , Epigenoma , Criança , Cognição , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Gravidez
15.
J Pers Med ; 12(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35207690

RESUMO

The role of epigenetics in the pathogenesis of asthma acquisition in adolescence and post-adolescence has been unknown. We carried out a longitudinal epigenome-wide association study, using data from the Isle of Wight Birth Cohort (IOWBC). To improve statistical power, we first screened CpGs based on associations of DNA methylation (DNAm) at an age of 10 years (pre-adolescence) with asthma acquisition at 10-18 years (during adolescence). A logistic regression with repeated measures was applied to CpGs that passed screening to examine the associations of pre-adolescence DNAm with asthma acquisition from 10-18 years and 18-26 years, with an interaction term to evaluate transition period specificity. Findings were further tested in an independent birth cohort, ALSPAC. In total, 205 CpGs (with 150 being females) showed associations with asthma acquisition (main or interaction effects) at FDR = 0.05 in IOWBC, of which 112 (90 being females) showed consistent associations in the ALSPAC. Genes that the identified CpGs were mapped to, e.g., AKAP1 and ENO1, have been shown to be associated with the risk of asthma. Our findings indicated that DNAm at specific CpGs was associated with asthma acquisition. CpGs showing such associations were likely to be different between males and females and, at certain CpGs, were unique to a specific transition period.

16.
Clin Epigenetics ; 14(1): 1, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980250

RESUMO

BACKGROUND: Epigenetic clocks are biomarkers of ageing derived from DNA methylation levels at a subset of CpG sites. The difference between age predicted by these clocks and chronological age, termed "epigenetic age acceleration", has been shown to predict age-related disease and mortality. We aimed to assess the prognostic value of epigenetic age acceleration and a DNA methylation-based mortality risk score with all-cause mortality in a prospective clinical cohort of individuals with head and neck cancer: Head and Neck 5000. We investigated two markers of intrinsic epigenetic age acceleration (IEAAHorvath and IEAAHannum), one marker of extrinsic epigenetic age acceleration (EEAA), one optimised to predict physiological dysregulation (AgeAccelPheno), one optimised to predict lifespan (AgeAccelGrim) and a DNA methylation-based predictor of mortality (ZhangScore). Cox regression models were first used to estimate adjusted hazard ratios (HR) and 95% confidence intervals (CI) for associations of epigenetic age acceleration with all-cause mortality in people with oropharyngeal cancer (n = 408; 105 deaths). The added prognostic value of epigenetic markers compared to a clinical model including age, sex, TNM stage and HPV status was then evaluated. RESULTS: IEAAHannum and AgeAccelGrim were associated with mortality risk after adjustment for clinical and lifestyle factors (HRs per standard deviation [SD] increase in age acceleration = 1.30 [95% CI 1.07, 1.57; p = 0.007] and 1.40 [95% CI 1.06, 1.83; p = 0.016], respectively). There was weak evidence that the addition of AgeAccelGrim to the clinical model improved 3-year mortality prediction (area under the receiver operating characteristic curve: 0.80 vs. 0.77; p value for difference = 0.069). CONCLUSION: In the setting of a large, clinical cohort of individuals with head and neck cancer, our study demonstrates the potential of epigenetic markers of ageing to enhance survival prediction in people with oropharyngeal cancer, beyond established prognostic factors. Our findings have potential uses in both clinical and non-clinical contexts: to aid treatment planning and improve patient stratification.


Assuntos
Envelhecimento/genética , Biomarcadores , Metilação de DNA/genética , Epigenômica , Neoplasias Orofaríngeas/genética , Neoplasias Orofaríngeas/mortalidade , Taxa de Sobrevida , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Estudos Prospectivos , Fatores de Risco , Reino Unido
17.
Arterioscler Thromb Vasc Biol ; 42(3): 362-365, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35045726

RESUMO

BACKGROUND: In this study, we investigated the capability of polygenic risk scores to stratify a cohort of young individuals into risk deciles based on 10 different cardiovascular traits and circulating biomarkers. METHODS: We first conducted large-scale genome-wide association studies using data on adults (mean age 56.5 years) enrolled in the UK Biobank study (n=393 193 to n=461 460). Traits and biomarkers analyzed were body mass index, systolic blood pressure, diastolic blood pressure, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, apolipoprotein B, apolipoprotein A-I, C-reactive protein and vitamin D. Findings were then leveraged to build whole genome polygenic risk scores in participants from the Avon Longitudinal Study of Parents and Children (mean age, 9.9 years) which were used to stratify this cohort into deciles in turn and analyzed against their respective traits. RESULTS: For each of the 10 different traits assessed, we found strong evidence of an incremental trend across deciles (all P<0.0001). Large differences were identified when comparing top and bottom deciles; for example, using the apolipoprotein B polygenic risk scores there was a mean difference of 13.2 mg/dL for this established risk factor of coronary heart disease in later life. CONCLUSIONS: Although the use of polygenic prediction in a clinical setting may currently be premature, our findings suggest they are becoming increasingly powerful as a means of predicting complex trait variation at an early stage in the lifecourse.


Assuntos
Biomarcadores/sangue , Fatores de Risco Cardiometabólico , Herança Multifatorial , Bancos de Espécimes Biológicos , Criança , Estudos de Coortes , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Modelos Lineares , Desequilíbrio de Ligação , Estudos Longitudinais , Masculino , Reino Unido
18.
Clin Exp Allergy ; 52(5): 658-669, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34995380

RESUMO

BACKGROUND: Little is known about the association of newborn DNA methylation (DNAm) with asthma acquisition across adolescence and early adult life. OBJECTIVE: We aim to identify epigenetic biomarkers in newborns for asthma acquisition during adolescence or young adulthood. METHODS: The Isle of Wight Birth Cohort (IOWBC) (n = 1456) data at ages 10, 18 and 26 years were assessed. To screen cytosine-phosphate-guanine site (CpGs) potentially associated with asthma acquisition, at the genome scale, we examined differentially methylated regions (DMR) using dmrff R package and individual CpG sites using linear regression on such associations. For CpGs that passed screening, we examined their enrichment in biological pathways using their mapping genes and tested their associations with asthma acquisitions using logistic regressions. Findings in IOWBC were tested in an independent cohort, the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. RESULTS: In total, 2636 unique CpGs passed screening, based on which we identified one biological pathway linked to asthma acquisition during adolescence in females (FDR adjusted p-value = .003 in IOWBC). Via logistic regressions, for females, four CpGs were shown to be associated with asthma acquisition during adolescence, and another four CpGs with asthma acquisition in young adulthood (FDR adjusted p-value < .05 in IOWBC) and these eight CpGs were replicated in ALSPAC (all p-values < .05). DNAm at all the identified CpGs was shown to be temporally consistent, and at six of the CpGs was associated with expressions of adjacent or mapping genes in females (all p-values < .05). For males, 622 CpGs were identified in IOWBC (FDR = 0.01), but these were not tested in ALSPAC due to small sample sizes. CONCLUSION AND CLINICAL RELEVANCE: Eight CpGs on LHX5, IL22RA2, SOX11, CBX4, ACPT, CFAP46, MUC4, and ATP1B2 genes have the potential to serve as candidate epigenetic biomarkers in newborns for asthma acquisition in females during adolescence or young adulthood.


Assuntos
Asma , Metilação de DNA , Adolescente , Adulto , Asma/diagnóstico , Asma/genética , Criança , Ilhas de CpG , Epigênese Genética , Epigenômica , Feminino , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Ligases/genética , Estudos Longitudinais , Masculino , Proteínas do Grupo Polycomb/genética , Receptores de Interleucina/genética , Adulto Jovem
19.
ACR Open Rheumatol ; 4(4): 363-370, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35077020

RESUMO

OBJECTIVE: Juvenile idiopathic arthritis (JIA) is the most common pediatric rheumatic disease; however, little is known about its wider health impacts. This study explores health outcomes associated with JIA genetic liability. METHODS: We used publicly available genetic data sets to interrogate the genetic correlation between JIA and 832 other health-related traits using linkage disequilibrium score regression. Two-sample Mendelian randomization (2SMR) was used to examine four genetic correlates for evidence of causality. RESULTS: We found robust evidence (adjusted P [Padj ] < 0.05) of genetic correlation between JIA and rheumatoid arthritis (genetic correlation [rg ] = 0.63, Padj  = 0.029), hypothyroidism/myxedema (rg  = 0.61, Padj  = 0.041), celiac disease (CD) (rg  = 0.58, Padj  = 0.032), systemic lupus erythematosus (rg  = 0.40, Padj  = 0.032), coronary artery disease (CAD) (rg  = 0.42, Padj  = 0.006), number of noncancer illnesses (rg  = 0.42, Padj  = 0.016), paternal health (rg  = 0.57, Padj  = 0.032), and strenuous sports (rg  = -0.52, Padj  = 0.032). 2SMR analyses found robust evidence that genetic liability to JIA was causally associated with the number of noncancer illnesses reported by UK Biobank (UKBB) participants (increase of 0.03 noncancer illnesses per doubling odds of JIA, 95% confidence interval 0.01-0.05). CONCLUSION: This study illustrates genetic sharing between JIA and a diversity of health outcomes. The causal association between genetic liability to JIA and noncancer illnesses suggests a need for broader health assessments of patients with JIA to reduce their potential comorbid burden. The strength of genetic correlation with hypothyroidism and CD implies that patients with JIA may benefit from CD and thyroid function screening. Strong positive genetic correlation between JIA and CAD supports the need for cardiovascular risk assessment and risk factor modification.

20.
Circ Res ; 130(3): 384-400, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35012325

RESUMO

BACKGROUND: DNA hypomethylation at the F2RL3 (F2R like thrombin or trypsin receptor 3) locus has been associated with both smoking and atherosclerotic cardiovascular disease; whether these smoking-related associations form a pathway to disease is unknown. F2RL3 encodes protease-activated receptor 4, a potent thrombin receptor expressed on platelets. Given the role of thrombin in platelet activation and the role of thrombus formation in myocardial infarction, alterations to this biological pathway could be important for ischemic cardiovascular disease. METHODS: We conducted multiple independent experiments to assess whether DNA hypomethylation at F2RL3 in response to smoking is associated with risk of myocardial infarction via changes to platelet reactivity. Using cohort data (N=3205), we explored the relationship between smoking, DNA hypomethylation at F2RL3, and myocardial infarction. We compared platelet reactivity in individuals with low versus high DNA methylation at F2RL3 (N=41). We used an in vitro model to explore the biological response of F2RL3 to cigarette smoke extract. Finally, a series of reporter constructs were used to investigate how differential methylation could impact F2RL3 gene expression. RESULTS: Observationally, DNA methylation at F2RL3 mediated an estimated 34% of the smoking effect on increased risk of myocardial infarction. An association between methylation group (low/high) and platelet reactivity was observed in response to PAR4 (protease-activated receptor 4) stimulation. In cells, cigarette smoke extract exposure was associated with a 4.9% to 9.3% reduction in DNA methylation at F2RL3 and a corresponding 1.7-(95% CI, 1.2-2.4, P=0.04) fold increase in F2RL3 mRNA. Results from reporter assays suggest the exon 2 region of F2RL3 may help control gene expression. CONCLUSIONS: Smoking-induced epigenetic DNA hypomethylation at F2RL3 appears to increase PAR4 expression with potential downstream consequences for platelet reactivity. Combined evidence here not only identifies F2RL3 DNA methylation as a possible contributory pathway from smoking to cardiovascular disease risk but from any feature potentially influencing F2RL3 regulation in a similar manner.


Assuntos
Plaquetas/metabolismo , Epigênese Genética , Infarto do Miocárdio/genética , Receptores de Trombina/genética , Idoso , Metilação de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Infarto do Miocárdio/epidemiologia , Receptores de Trombina/metabolismo , Fumar/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...