*Opt Express ; 28(13): 18693-18706, 2020 Jun 22.*

##### RESUMO

Solid quantum repeater is a core part in a large-scale quantum network. Entanglement purification, the key technique in a quantum repeater, is used to distill high-quality nonlocal entanglement from an ensemble in a mixed entangled state and to depress the vicious influence on quantum information carriers caused by noise. Here, we present an imperfect-interaction-free entanglement purification on nonlocal electron spins in quantum dots for solid quantum repeaters, using faithful parity check on electron spins. The faithful parity check can make correct judgement on the parity mode without destructing the nonlocal solid entanglement even with the imperfect interaction between a QD embedded inside a microcavity and a circularly polarized photon in the nearly realistic condition. Therefore, the imperfect-interaction-free entanglement purification can prevent the maximally entangled states from being changed into partially entangled ones and guarantee the fidelity of the nonlocal mixed state to a desired one after purification. As this scheme is feasible in the nearly realistic condition with imperfect interaction, the requirements for experimental implementation will be relaxed. These distinctive features make this imperfect-interaction-free entanglement purification have more practical applications in solid quantum repeaters for a large-scale quantum network.

*Opt Express ; 28(4): 4611-4624, 2020 Feb 17.*

##### RESUMO

Channel noise is the main issue which reduces the efficiency of quantum communication. Here we present an efficient scheme for quantum key distribution against collective-rotation channel noise using polarization and transverse spatial mode of photons. Exploiting the two single-photon Bell states and two-photon hyperentangled Bell states in the polarization and the transverse spatial mode degrees of freedom (DOFs), the mutually unbiased bases can be encoded for logical qubits against the collective-rotation noise. Our scheme shows noiseless subspaces can be made up of two DOFs of two photons instead of multiple photons, which will reduce the resources required for noiseless subspaces and depress the photonic loss sensitivity. Moreover, the two single-photon Bell states and two-photon hyperentangled Bell states are symmetrical to the two photons, which means the relative order of the two photons is not required in our scheme, so the receiver only needs to measure the state of each photon, which makes our protocol easy to execute in experiment than the previous works.

*J Nematol ; 52: 1-2, 2020.*

##### RESUMO

During a survey of plant parasitic nematodes in 2019, at Gansu Province, China, the stunt nematode Tylenchorhynchus zeae was found parasitizing corn seedlings. Females, males and juveniles of T. zeae were observed on soil and roots samples of corn after processing and extraction. This population of stunt nematodes was identified based on morphological and by sequencing the ITS1 region of rDNA and D2/D3 fragments of the 28 S rRNA. The ITS1 and the D2/D3 sequences of this population, shared 99.00 to 99.05% and 99.43 to 99.73% of similarity with sequences corresponding to T. zeae in GenBank, respectively. This is the first report of T. zeae infecting corn in Gansu Province, northwest China.During a survey of plant parasitic nematodes in 2019, at Gansu Province, China, the stunt nematode Tylenchorhynchus zeae was found parasitizing corn seedlings. Females, males and juveniles of T. zeae were observed on soil and roots samples of corn after processing and extraction. This population of stunt nematodes was identified based on morphological and by sequencing the ITS1 region of rDNA and D2/D3 fragments of the 28 S rRNA. The ITS1 and the D2/D3 sequences of this population, shared 99.00 to 99.05% and 99.43 to 99.73% of similarity with sequences corresponding to T. zeae in GenBank, respectively. This is the first report of T. zeae infecting corn in Gansu Province, northwest China.

*Opt Express ; 27(6): 8994-9003, 2019 Mar 18.*

##### RESUMO

We present a simple protocol for complete analysis of 16 hyperentangled Bell states of two-photon system in the polarization and the first longitudinal momentum degrees of freedom (DOFs). This complete analysis protocol is accomplished with the auxiliary hyperentangled Bell state in the frequency and the second longitudinal momentum DOFs utilizing the experimentally available optical elements including linear optical elements which manipulate the polarizations and the longitudinal momentums and the optical devices which manipulate frequencies of photons. This complete analysis protocol allows the transmission of log216=4 bits of classical information via quantum hyperdense coding scheme, which is the upper bound of the transmission capacity of the quantum hyperdense coding scheme based on 16 orthogonal hyperentangled Bell states. This complete analysis protocol has a potential to be experimentally realized and is useful for high-capacity quantum communication based on hyperentangled states.

*Opt Express ; 25(10): 10863-10873, 2017 May 15.*

##### RESUMO

Under the balance condition of the diamond nitrogen vacancy center embedded in an optical cavity as a result of cavity quantum electrodynamics, we present a robust hyperparallel photonic controlled-phase-flip gate for a two-photon system in both the polarization and spatial-mode degrees of freedom (DOFs), in which the noise caused by the inequality of two reflection coefficients can be depressed efficiently. This gate doubles the quantum entangling operation synchronously on a photon system and can reduce the quantum resources consumed largely and depress the photonic dissipation efficiently, compared with the two cascade quantum entangling gates in one DOF. It has a near unit fidelity. Moreover, we show that the balance condition can be obtained in both the weak coupling regime and the strong coupling regime, and the high-fidelity quantum gate operation is easier to be realized in the balance condition than the ones in the ideal condition in experiment.

*Opt Express ; 24(25): 28444-28458, 2016 Dec 12.*

##### RESUMO

We construct an error-detected block, assisted by the quantum-dot spins in double-sided optical microcavities. With this block, we propose three error-detected schemes for the deterministic generation, the complete analysis, and the complete nondestructive analysis of hyperentangled Bell states in both the polarization and spatial-mode degrees of freedom of two-photon systems. In these schemes, the errors can be detected, which can improve their fidelities largely, far different from other previous schemes assisted by the interaction between the photon and the QD-cavity system. Our scheme for the deterministic generation of hyperentangled two-photon systems can be performed by repeat until success. These features make our schemes more useful in high-capacity quantum communication with hyperentanglement in the future.

*Sci Rep ; 5: 16444, 2015 Nov 10.*

##### RESUMO

We present a two-step hyperentanglement concentration protocol (hyper-ECP) for polarization-spatial hyperentangled Bell states based on the high-capacity character of hyperentanglement resorting to the swap gates, which is used to obtain maximally hyperentangled states from partially hyperentangled pure states in long-distance quantum communication. The swap gate, which is constructed with the giant optical circular birefringence (GOCB) of a diamond nitrogen-vacancy (NV) center embedded in a photonic crystal cavity, can be used to transfer the information in one degree of freedom (DOF) between photon systems. By transferring the useful information between hyperentangled photon pairs, more photon pairs in maximally hyperentangled state can be obtained in our hyper-ECP, and the success probability of the hyper-ECP is greatly improved. Moreover, we show that the high-fidelity quantum gate operations can be achieved by mapping the infidelities to heralded losses even in the weak coupling regime.

*Sci Rep ; 4: 4623, 2014 Apr 11.*

##### RESUMO

It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating on both the spatial-mode and the polarization DOFs of a two-photon system simultaneously, by exploiting the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics (QED). This hyper-CNOT gate is implemented by manipulating the four qubits in the two DOFs of a two-photon system without auxiliary spatial modes or polarization modes. It reduces the operation time and the resources consumed in quantum information processing, and it is more robust against the photonic dissipation noise, compared with the integration of several cascaded CNOT gates in one DOF.

*Opt Express ; 22(6): 6547-61, 2014 Mar 24.*

##### RESUMO

Hyperentanglement is a promising resource in quantum information processing, especially for increasing the channel capacity of long-distance quantum communication. Here we present a general hyper-entanglement concentration protocol (hyper-ECP) for nonlocal partially hyperentangled Bell states that decay with the interrelationship between the polarization and the spatial-mode degrees of freedom of two-photon systems, which is not taken into account in other hyper-ECPs, resorting to the optical property of the quantum-dot spins inside one-side optical microcavities. We show that the success probability of our hyper-ECP is largely increased by iteration of the hyper-ECP process. Our hyper-ECP can be straightforwardly generalized to distill nonlocal maximally hyperentangled N-photon Greenberger-Horne-Zeilinger (GHZ) states from arbitrary partially hyperentangled GHZ-class states.

*Opt Express ; 20(22): 24664-77, 2012 Oct 22.*

##### RESUMO

Bell-state analysis (BSA) is essential in quantum communication, but it is impossible to distinguish unambiguously the four Bell states in the polarization degree of freedom (DOF) of two-photon systems with only linear optical elements, except for the case in which the BSA is assisted with hyperentangled states, the simultaneous entanglement in more than one DOF. Here, we propose a scheme to distinguish completely the 16 hyperentangled Bell states in both the polarization and the spatial-mode DOFs of two-photon systems, by using the giant nonlinear optics in quantum dot-cavity systems. This scheme can be applied to increase the channel capacity of long-distance quantum communication based on hyperentanglement, such as entanglement swapping, teleportation, and superdense coding. We use hyperentanglement swapping as an example to show the application of this HBSA.