Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 220(10): 1667-1678, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31419286

RESUMO

BACKGROUND: Trans-translation is a ribosome rescue system that plays an important role in bacterial tolerance to environmental stresses. It is absent in animals, making it a potential treatment target. However, its role in antibiotic tolerance in Pseudomonas aeruginosa remains unknown. METHODS: The role and activity of trans-translation during antibiotic treatment were examined with a trans-translation-deficient strain and a genetically modified trans-translation component gene, respectively. In vitro assays and murine infection models were used to examine the effects of suppression of trans-translation. RESULTS: We found that the trans-translation system plays an essential role in P. aeruginosa tolerance to azithromycin and multiple aminoglycoside antibiotics. We further demonstrated that gentamicin could suppress the azithromycin-induced activation of trans-translation. Compared with each antibiotic individually, gentamicin and azithromycin combined increased the killing efficacy against planktonic and biofilm-associated P. aeruginosa cells, including a reference strain PA14 and its isogenic carbapenem-resistance oprD mutant, the mucoid strain FRD1, and multiple clinical isolates. Furthermore, the gentamicin-azithromycin resulted in improved bacterial clearance in murine acute pneumonia, biofilm implant, and cutaneous abscess infection models. CONCLUSIONS: Combination treatment with gentamicin and azithromycin is a promising strategy in combating P. aeruginosa infections.

2.
Am J Physiol Endocrinol Metab ; 317(2): E284-E297, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31184932

RESUMO

Hydrogen sulfide (H2S), a gaseous molecule, is involved in modulating multiple physiological functions, such as antioxidant, antihypertension, and the production of polysulfide cysteine. H2S may inhibit reactive oxygen species generation and ATP production through modulating respiratory chain enzyme activities; however, the mechanism of this effect remains unclear. In this study, db/db mice, neonatal rat cardiomyocytes, and H9c2 cells treated with high glucose, oleate, and palmitate were used as animal and cellular models of type 2 diabetes. The mitochondrial respiratory rate, respiratory chain complex activities, and ATP production were decreased in db/db mice compared with those in db/db mice treated with exogenous H2S. Liquid chromatography with tandem mass spectrometry analysis showed that the acetylation level of proteins involved in the mitochondrial respiratory chain were increased in the db/db mice hearts compared with those with sodium hydrosulfide (NaHS) treatment. Exogenous H2S restored the ratio of NAD+/NADH, enhanced the expression and activity of sirtuin 3 (SIRT3) and decreased mitochondrial acetylation level in cardiomyocytes under hyperglycemia and hyperlipidemia. As a result of SIRT3 activation, acetylation of the respiratory complexe enzymes NADH dehydrogenase 1 (ND1), ubiquinol cytochrome c reductase core protein 1, and ATP synthase mitochondrial F1 complex assembly factor 1 was reduced, which enhanced the activities of the mitochondrial respiratory chain activity and ATP production. We conclude that exogenous H2S plays a critical role in improving cardiac mitochondrial function in diabetes by upregulating SIRT3.

3.
J Antimicrob Chemother ; 74(9): 2575-2587, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31139822

RESUMO

OBJECTIVES: Bacterial persisters are a small subpopulation of cells that are highly tolerant of antibiotics and contribute to chronic and recalcitrant infections. Global gene expression in Pseudomonas aeruginosa persister cells and genes contributing to persister formation remain largely unknown. The objective of this study was to examine the gene expression profiles of the persister cells and those that regained growth in fresh medium, as well as to identify novel genes related to persister formation. METHODS: P. aeruginosa persister cells and those that regrew in fresh medium were collected and subjected to RNA sequencing analysis. Genes up-regulated in the persister cells were overexpressed to evaluate their roles in persister formation. The functions of the persister-contributing genes were assessed with pulse-chase assay, affinity chromatography, fluorescence and electron microscopy, as well as a light-scattering assay. RESULTS: An operon containing PA2282-PA2287 was up-regulated in the persister cells and down-regulated in the regrowing cells. PA2285 and PA2287 play key roles in persister formation. PA2285 and PA2287 were found to bind to RpoC and FtsZ, which are involved in transcription and cell division, respectively. Pulse-chase assays demonstrated inhibitory effects of PA2285 and PA2287 on the overall transcription. Meanwhile, light-scattering and microscopy assays demonstrated that PA2285 and PA2287 interfere with cell division by inhibiting FtsZ aggregation. PA2285 and PA2287 are conserved in pseudomonads and their homologous genes in Pseudomonas putida contribute to persister formation. CONCLUSIONS: PA2285 and PA2287 are novel bifunctional proteins that contribute to persister formation in P. aeruginosa.

4.
Nat Commun ; 10(1): 1506, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944328

RESUMO

Alkaline polymer electrolyte fuel cells are a class of fuel cells that enable the use of non-precious metal catalysts, particularly for the oxygen reduction reaction at the cathode. While there have been alternative materials exhibiting Pt-comparable activity in alkaline solutions, to the best of our knowledge none have outperformed Pt in fuel-cell tests. Here we report a Mn-Co spinel cathode that can deliver greater power, at high current densities, than a Pt cathode. The power density of the cell employing the Mn-Co cathode reaches 1.1 W cm-2 at 2.5 A cm-2 at 60 oC. Moreover, this catalyst outperforms Pt at low humidity. In-depth characterization reveals that the remarkable performance originates from synergistic effects where the Mn sites bind O2 and the Co sites activate H2O, so as to facilitate the proton-coupled electron transfer processes. Such an electrocatalytic synergy is pivotal to the high-rate oxygen reduction, particularly under water depletion/low humidity conditions.

5.
Oxid Med Cell Longev ; 2019: 9817576, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30805086

RESUMO

The mitochondrial protein mitoNEET is a type of iron-sulfur protein localized to the outer membrane of mitochondria and is involved in a variety of human pathologies including cystic fibrosis, diabetes, muscle atrophy, and neurodegeneration. In the current study, we found that isoliquiritigenin (ISL), one of the components of the root of Glycyrrhiza glabra L., could decrease the expression of mitoNEET in A375 melanoma cells. We also demonstrated that mitoNEET could regulate the content of reactive oxygen species (ROS), by showing that the ISL-mediated increase in the cellular ROS content could be mitigated by the mitoNEET overexpression. We also confirmed the important role of ROS in ISL-treated A375 cells. The increased apoptosis rate and the decreased mitochondrial membrane potential were mitigated by the overexpression of mitoNEET in A375 cells. These findings indicated that ISL could decrease the expression of mitoNEET, which regulated ROS content and subsequently induced mitochondrial dysfunction and apoptosis in A375 cells. Our findings also highlight mitoNEET as a promising mitochondrial target for cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Chalconas/farmacologia , Melanoma/metabolismo , Melanoma/patologia , Mitocôndrias/patologia , Proteínas Mitocondriais/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo
6.
Drug Des Devel Ther ; 12: 3817-3824, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30464413

RESUMO

Background: Guillain-Barré syndrome is an acute inflammatory demyelinating polyneuropathy that is characterized histologically by demyelination of peripheral nerves and nerve roots, infiltrates of T lymphocytes, and an inflammatory response that includes macrophage infiltrates. The aim of this study was to evaluate the effects of vasoactive intestinal peptide (VIP) in a rat model of experimental autoimmune neuritis (EAN). Methods: Forty male Lewis rats were divided into a control group (N=10), an EAN group (N=10), an EAN group treated with 15 nmol of VIP (N=10), and an EAN group treated with 30 nmol of VIP (N=10). The rat model was created by subcutaneous injection of P2 polypeptide (200 µg P257-81) into the base of the tail. Intraperitoneal injection of VIP was given on day 7. Rats were weighed and functionally evaluated using an EAN score (0-10). On day 16, the rats were euthanized. The sciatic nerve was examined histologically and using immunohistochemistry with antibodies against CD8, CD68, and forkhead box p3 (Foxp3). Serum concentrations of IL-17 and interferon-α (IFN-α) were measured by ELISA on day 16 after creating the EAN model. Results: The VIP-treated EAN groups had increased body weight and improved EAN scores compared with the untreated EAN group. CD8-positive and CD68-positive cells were significantly reduced in the EAN group treated with 30 nmol of VIP compared with 15 nmol of VIP. Foxp3-positive cells were significantly decreased in both EAN groups treated with VIP, and serum concentrations of IL-17 and IFN-α were significantly lower compared with the untreated EAN group (P<0.05). Conclusion: In a rat model of EAN, treatment with VIP resulted in functional improvement, reduced nerve inflammation, and decreased serum levels of inflammatory cytokines.

7.
Chin J Integr Med ; 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467695

RESUMO

OBJECTIVE: To follow up the participants of the randomized clinical trial "Efficacy and Safety of Niaoduqing Particles () for Delaying Moderate-to-Severe Renal Dysfunction", and assess the long-term effects of Niaoduqing Particles on delaying the progression of renal dysfunction. METHODS: Participants, who had previously been randomly assigned to receive Niaoduqing Particles or placebo for 24 weeks (146 cases in each group), were invited to follow-up and all were administered Niaoduqing Particles 5 g thrice daily and 10 g before bedtime for 24 weeks. The primary endpoints were changes in baseline serum creatinine (Scr) and estimated glomerular filtration rate (eGFR) after completion of the open-label treatment period. RESULTS: After the double-blind period, the median (interquartile range) changes in Scr were 1.1 (-13.0-24.1) and 11.7 (-2.6-42.9) µmol/L for the Niaoduqing Particle and placebo groups, respectively (P=0.008), and the median changes in eGFRs were-0.2 (-4.3-2.7) and-2.21 (-5.7-0.8) mL•min-1•1.73 m-2, respectively (P=0.016). There were significant differences in the double-blind period changes in renal function between groups. After the open-label period, the median changes in Scr were 9.0 (-10.0-41.9) and 17.5 (-6.0-50.0) µmol/L for the Niaoduqing Particle and placebo groups according to baseline grouping, respectively (P=0.214), and the median changes in eGFRs were-2.3 (-6.4-1.9) and-3.7 (-7.5-1.1) mL•min-1•1.73 m-2, respectively (P=0.134). There were no statistical differences in the open-label period changes in renal function between groups. The eGFR reduction of participants who accepted Niaoduqing Particle treatment for 48 weeks was projected to 2.5 mL•min-1•1.73 m-2 per year. CONCLUSIONS: Niaoduqing Particles appear to have long-term efficacy for patients with moderate-to-severe renal dysfunction. Although there was no statistical difference, the early use of Niaoduqing Paticles seems to ameliorate the worsening of renal function. (Trial registration No. ChiCTR-TRC-12002448).

8.
Life Sci ; 213: 183-189, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30304693

RESUMO

Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders involving structural and functional impairment of the brain. Inwardly rectifying potassium (Kir) channels may contribute to the etiology of ASD by altering brain function. This study investigated the associations between genetic variants of KCNJ2 and KCNJ10 genes (encoding Kir2.1 and Kir4.1, respectively) and ASD risk in patients, and Kir channel expression in ASD model rats. This case-control study involved a cohort of 269 Chinese children with ASD and 243 unrelated healthy controls. Twelve tag single nucleotide polymorphisms (SNPs) from the KCNJ2 and KCNJ10 genes were genotyped by Sequenom Mass Array, while a valproic acid (VPA)-induced rat model of ASD was used to evaluate Kir channel expression in the hippocampus. Among the 12 examined SNPs, only KCNJ10 rs1186689 was significantly associated with disease susceptibility; the variant T allele conferred a lower risk of developing ASD [odds ratio (OR) = 0.61, 95% confidence interval (CI) = 0.47-0.80, p false discovery rate (FDR) = 0.012, and OR = 0.63, 95% CI = 0.48-0.84, pFDR = 0.014 at the allelic and genotypic levels, respectively]. Additionally, hippocampal Kir2.1 and Kir4.1 levels were decreased in VPA as compared to control rats. These results demonstrated that KCNJ10 (rs1186689) polymorphisms was correlated with ASD susceptibility in Chinese Han children, and the abnormal expression of Kir2.1 and Kir4.1 in ASD model rats suggested a mechanism by which Kir channels may play a role in ASD.

9.
Artigo em Inglês | MEDLINE | ID: mdl-30344612

RESUMO

Background: The treatment of adult refractory idiopathic membranous nephropathy with steroid and other immunosuppressant-resistant nephrotic syndromes can be a significant challenge. We evaluated the efficacy and safety of the traditional Chinese medicine Jian Pi Qu Shi Formula (JPQSF) as a promising regimen. Methods: We analyzed 15 consecutive patients with biopsy-proven idiopathic membranous nephropathy who failed immunosuppressive therapy from October 2013 to January 2017. JPQSF was administered orally two times per day, respectively, in the morning and at night for 6 months. All patients had at least 1 year of follow-up. The primary endpoints included complete or partial remission. Secondary endpoints included change of clinical parameters and adverse events after 12 months of treatment. Results: After 12 months, complete remission was achieved in 13.3% of patients and partial remission in 66.7%, yielding a response rate of 80%. Proteinuria, serum albumin, and cholesterol were improved significantly (P<0.001, P<0.001, and P<0.05, respectively). After 1 year of treatment, proteinuria (mean ± SD) decreased from 5.93 ± 2.54 g per 24 h to 1.99 ± 1.17 g per 24 h (P<0.001). No serious adverse events occurred during the observation. Conclusions: JPQSF may be an alternative therapeutic option for steroid and general immunosuppressant-resistant membranous nephrotic syndrome patients, with a favorable safety profile. Larger and longer follow-up studies evaluating this regimen are warranted.

10.
Artigo em Inglês | MEDLINE | ID: mdl-30210454

RESUMO

Background: The association between paraoxonase 2 (PON2) gene polymorphisms and type 2 diabetes mellitus (T2DM) has been extensively investigated in the Chinese population with conflicting results. In this study, we systematically evaluated the association between PON2 Ser311Cys and Ala148Gly polymorphisms and T2DM risk by pooling all relevant studies. Methods: We searched PubMed, Embase, CNKI, and Wanfang databases for the studies. The strength of association was determined by the allelic, homozygous, heterozygous, recessive, and dominant genetic models and measured as odds ratio (OR) and 95% confidence interval (CI), under fixed- or random-effect models. Results: There was no significant association between PON2 Ser311Cys polymorphism and T2DM under any of the genetic models: allelic (OR = 1.06, 95% CI = 0.77-1.45; P = 0.721), heterozygous (OR = 1.13, 95% CI = 0.87-1.45; P = 0.362), dominant (OR = 1.10, 95% CI = 0.80-1.51; P = 0.562), recessive (OR = 0.87, 95% CI = 0.48-1.58; P = 0.648), homozygous (OR = 0.94, 95% CI = 0.47-1.89; P = 0.865). Similarly, no significant association was found in PON2 Arg148Gly polymorphism under any of the models: allelic (OR = 1.17, 95% CI = 0.91-1.50; P = 0.218), heterozygous (OR = 1.28, 95% CI = 0.94-1.74; P = 0.117), dominant (OR = 1.25, 95% CI = 0.93-1.67; P = 0.142), recessive (OR = 0.99, 95% CI = 0.52-1.88; P = 0.973), homozygous (OR = 1.08, 95% CI = 0.57-2.07; P = 0.808). Conclusions: The PON2 Ser311Cys and Ala148Gly polymorphisms were not associated with the risk of developing T2DM in the Chinese population.

12.
Cell Rep ; 24(1): 142-154, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29972776

RESUMO

Circulating natural killer (NK) cells help protect the host from lympho-hematogenous acute viral diseases by rapidly entering draining lymph nodes (dLNs) to curb virus dissemination. Here, we identify a highly choreographed mechanism underlying this process. Using footpad infection with ectromelia virus, a pathogenic DNA virus of mice, we show that TLR9/MyD88 sensing induces NKG2D ligands in virus-infected, skin-derived migratory dendritic cells (mDCs) to induce production of IFN-γ by classical NK cells and other types of group 1 innate lymphoid cells (ILCs) already in dLNs, via NKG2D. Uninfected inflammatory monocytes, also recruited to dLNs by mDCs in a TLR9/MyD88-dependent manner, respond to IFN-γ by secreting CXCL9 for optimal CXCR3-dependent recruitment of circulating NK cells. This work unveils a TLR9/MyD88-dependent mechanism whereby in dLNs, three cell types-mDCs, group 1 ILCs (mostly NK cells), and inflammatory monocytes-coordinate the recruitment of protective circulating NK cells to dLNs.

13.
Curr Genet ; 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29951698

RESUMO

The Pseudomonas aeruginosa RsaL is a negative regulator of the quorum sensing signal synthesis gene lasI. The expression of RsaL is directly activated by the LasI cognate regulator LasR. Thus, RsaL and LasI-LasR (LasI/R) form a regulatory loop. Further studies revealed that RsaL is a global regulator which controls the expression of numerous genes through quorum sensing system dependent and independent pathways. However, whether RsaL is involved in antibiotic tolerance remains elusive. In this study, we found that the mutation of rsaL increased bacterial tolerance to ciprofloxacin and carbenicillin. Through motif search, gene expression analyses and electrophoretic mobility shift assays, we found that RsaL directly represses the expression of the narK1K2GHJI operon, which is involved in the tolerance to ciprofloxacin. We further demonstrated that the narK1K2GHJI operon is directly regulated by LasR. In combination, our study revealed a novel operon under the control of the RsaL, LasI/R regulatory loop.

14.
J Immunol ; 200(10): 3347-3352, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29643193

RESUMO

Numerous attempts to produce antiviral vaccines by harnessing memory CD8 T cells have failed. A barrier to progress is that we do not know what makes an Ag a viable target of protective CD8 T cell memory. We found that in mice susceptible to lethal mousepox (the mouse homolog of human smallpox), a dendritic cell vaccine that induced memory CD8 T cells fully protected mice when the infecting virus produced Ag in large quantities and with rapid kinetics. Protection did not occur when the Ag was produced in low amounts, even with rapid kinetics, and protection was only partial when the Ag was produced in large quantities but with slow kinetics. Hence, the amount and timing of Ag expression appear to be key determinants of memory CD8 T cell antiviral protective immunity. These findings may have important implications for vaccine design.

15.
J Cell Mol Med ; 22(3): 1720-1732, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29314660

RESUMO

Many studies have examined the associations between paraoxonase-1 (PON1) genetic polymorphisms (Q192R, rs662 and L55M, rs854560) and the susceptibility to type 2 diabetes mellitus (T2DM) across different ethnic populations. However, the evidence for the associations remains inconclusive. In this study, we performed a meta-analysis to clarify the association of the two PON1 variants with T2DM risk. We carried out a systematic search of PubMed, Embase, CNKI and Wanfang databases for studies published before June 2017. The pooled odds ratios (ORs) for the association and their corresponding 95% confidence intervals (CIs) were calculated by a random- or fixed-effect model. A total of 50 eligible studies, including 34 and 16 studies were identified for the PON1 Q192R (rs662) and L55M (rs854560) polymorphism, respectively. As for the PON1 Q192R polymorphism, the 192R allele was a susceptible factor of T2DM in the South or East Asian population (OR > 1, P < 0.05) but represented a protective factor of T2DM in European population (OR = 0.66, 95% CI = 0.45-0.98) under a heterozygous genetic model. With regard to the PON1 L55M polymorphism, significant protective effects of the 55M allele on T2DM under the heterozygous (OR = 0.77, 95% CI = 0.61-0.97) and dominant (OR = 0.80, 95% CI = 0.65-0.99) genetic models were found in the European population, while no significant associations in the Asian populations under all genetic models (P > 0.05). In summary, by a comprehensive meta-analysis, our results firmly indicated that distinct effects of PON1 genetic polymorphisms existed in the risk of T2DM across different ethnic backgrounds.

16.
Biochem Biophys Res Commun ; 496(4): 1040-1046, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29366782

RESUMO

The impact of DNA mismatch repair (MMR) on resistance to temozolomide (TMZ) therapy in patients with glioblastoma (GBM) is recently reported but the mechanisms are not understood. We aim to analyze the correlation between MMR function and the acquired TMZ resistance in GBM using both relevant clinical samples and TMZ resistant cells. First we found increased expression of MSH6, one of key components of MMR, in recurrent GBM patients' samples who underwent TMZ chemotherapy, comparing with those matched samples collected at the time of diagnosis. Using the cellular models of acquired resistance to TMZ, we further confirmed the up-regulation of MSH6 in TMZ resistant cells. Moreover, a TCGA dataset contains a large cohort of GBM clinical samples with or without TMZ treatment reinforced the increased expression of MSH6 and other MMR genes after long-term TMZ chemotherapy, which may resulted in MMR dysfunction and acquired TMZ resistance. Our results suggest that increased expression of MSH6, or other MMR, may be a new mechanism contributing to the acquired resistance during TMZ therapy; and may serve as an indicator to the resistance in GBM.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dacarbazina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Adulto , Antineoplásicos Alquilantes/administração & dosagem , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Dacarbazina/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Temozolomida , Resultado do Tratamento , Células Tumorais Cultivadas , Regulação para Cima
17.
J Mol Med (Berl) ; 96(3-4): 281-299, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29349500

RESUMO

Hydrogen sulfide (H2S) is involved in diverse physiological functions, such as anti-hypertension, anti-proliferation, regulating ATP synthesis, and reactive oxygen species production. Sirtuin 3 (SIRT3) is a NAD + -dependent deacetylase that regulates mitochondrial energy metabolism. The role of H2S in energy metabolism in diabetic cardiomyopathy (DCM) may be related to regulate SIRT3 expression; however, this role remains to be elucidated. We hypothesized that exogenous H2S could switch cardiac energy metabolic substrate preference by lysine acetylation through promoting the expression of SIRT3 in cardiac tissue of db/db mice. Db/db mice, neonatal rat cardiomyocytes, and H9c2 cell line with the treatment of high glucose, oleate, and palmitate were used as animal and cellular models of type 2 diabetes. Using LC-MS/MS, we identified 76 proteins that increased acetylation, including 8 enzymes related to fatty acid ß-oxidation and 7 enzymes of the tricarboxylic acid (TCA) cycle in the db/db mice hearts compared to those with the treatment of NaHS. Exogenous H2S restored the expression of NAMPT and the ratio of NAD+/NADH enhanced the expression and activity of SIRT3. As a result of activation of SIRT3, the acetylation level and activity of fatty acid ß-oxidation enzyme LCAD and the acetylation of glucose oxidation enzymes PDH, IDH2, and CS were reduced which resulted in activation of PDH, IDH2, and CS. Our finding suggested that H2S induced a switch in cardiac energy substrate utilization from fatty acid ß-oxidation to glucose oxidation in DCM through regulating SIRT3 pathway. KEY MESSAGES: H2S regulated the acetylation level and activities of enzymes in fatty acid oxidation and glucose oxidation in cardiac tissues of db/db mice. Exogenous H2S decreased mitochondrial acetylation level through upregulating the expression and activity of SIRT3 in vivo and in vitro. H2S induced a switch in cardiac energy substrate utilization from fatty acid oxidation to glucose.

18.
Chin Med J (Engl) ; 130(20): 2402-2409, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29052559

RESUMO

BACKGROUND: Chronic kidney disease (CKD) with moderate-to-severe renal dysfunction usually exhibits an irreversible course, and available treatments for delaying the progression to end-stage renal disease are limited. This study aimed to assess the efficacy and safety of the traditional Chinese medicine, Niaoduqing particles, for delaying renal dysfunction in patients with stage 3b-4 CKD. METHODS: The present study was a prospective, randomized, double-blind, placebo-controlled, multicenter clinical trial. From May 2013 to December 2013, 300 CKD patients with an estimated glomerular filtration rate (eGFR) between 20 and 45 ml·min-1·1.73 m-2, aged 18-70 years were recruited from 22 hospitals in 11 Chinese provinces. Patients were randomized in a 1:1 ratio to either a test group, which was administered Niaoduqing particles 5 g thrice daily and 10 g before bedtime for 24 weeks, or a control group, which was administered a placebo using the same methods. The primary endpoints were changes in baseline serum creatinine (Scr) and eGFR after completion of treatment. The primary endpoints were analyzed using Student's t-test or Wilcoxon's rank-sum test. The present study reported results based on an intention-to-treat (ITT) analysis. RESULTS: A total of 292 participants underwent the ITT analysis. At 24 weeks, the median (interquartile range) change in Scr was 1.1 (-13.0-24.1) and 11.7 (-2.6-42.9) µmol/L for the test and control groups, respectively (Z = 2.642, P = 0.008), and the median change in eGFR was -0.2 (-4.3-2.7) and -2.2 (-5.7-0.8) ml·min-1·1.73 m-2, respectively (Z = -2.408, P = 0.016). There were no significant differences in adverse events between the groups. CONCLUSIONS: Niaoduqing particles safely and effectively delayed CKD progression in patients with stage 3b-4 CKD. This traditional Chinese medicine may be a promising alternative medication for patients with moderate-to-severe renal dysfunction. TRIAL REGISTRATION: Chinese Clinical Trial Register, ChiCTR-TRC-12002448; http://www.chictr.org.cn/showproj.aspx?proj=7102.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Insuficiência Renal Crônica/tratamento farmacológico , Adolescente , Adulto , Idoso , Método Duplo-Cego , Feminino , Taxa de Filtração Glomerular/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Testes de Função Renal , Masculino , Medicina Tradicional Chinesa/métodos , Pessoa de Meia-Idade , Adulto Jovem
19.
Cell Death Differ ; 24(5): 929-943, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28387757

RESUMO

Inflammation is frequently associated with initiation, progression, and metastasis of colorectal cancer (CRC). Here, we unveil a CRC-specific metastatic programme that is triggered via the transcriptional repressor, GFI1. Using data from a large cohort of clinical samples including inflammatory bowel disease and CRC, and a cellular model of CRC progression mediated by cross-talk between the cancer cell and the inflammatory microenvironment, we identified GFI1 as a gating regulator responsible for a constitutively activated signalling circuit that renders CRC cells competent for metastatic spread. Further analysis of mouse models with metastatic CRC and human clinical specimens reinforced the influence of GFI1 downregulation in promoting CRC metastatic spread. The novel role of GFI1 is uncovered for the first time in a human solid tumour such as CRC. Our results imply that GFI1 is a potential therapeutic target for interfering with inflammation-induced CRC progression and spread.


Assuntos
Neoplasias Colorretais/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Doenças Inflamatórias Intestinais/genética , Neoplasias Hepáticas/genética , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Perfilação da Expressão Gênica , Células HT29 , Humanos , Inflamação , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Metástase Linfática , Camundongos , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Microambiente Tumoral/genética
20.
Sci Rep ; 7: 46566, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425476

RESUMO

Long non-coding RNAs (lncRNAs) have been demonstrated to play essential roles in diverse cellular processes and biological functions. Exploring the functions associated with lncRNAs may help provide insight into their underlying biological mechanisms. The current methods primarily focus on investigating the functions of individual lncRNAs; however, essential biological functions may be affected by the combinatorial effects of multiple lncRNAs. Here, we have developed a novel computational method, LncRNAs2Pathways, to identify the functional pathways influenced by the combinatorial effects of a set of lncRNAs of interest based on a global network propagation algorithm. A new Kolmogorov-Smirnov-like statistical measure weighted by the network propagation score, which considers the expression correlation among lncRNAs and coding genes, was used to evaluate the biological pathways influenced by the lncRNAs of interest. We have described the LncRNAs2Pathways methodology and illustrated its effectiveness by analyzing three lncRNA sets associated with glioma, prostate and pancreatic cancers. We further analyzed the reproducibility and robustness and compared our results with those of two other methods. Based on these analyses, we showed that LncRNAs2Pathways can effectively identify the functional pathways associated with lncRNA sets. Finally, we implemented this method as a freely available R-based tool.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA