Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
1.
Asian J Surg ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599967

RESUMO

BACKGROUND: High ulnar nerve injuries result in intrinsic muscle weakness and are inconvenient for patients. Moreover, conventional surgical techniques often fail to achieve satisfactory motor recovery. A potential reconstructive solution in the form of the supercharge end-to-side (SETS) anterior interosseous nerve (AIN) transfer method has emerged. Therefore, this study aims to compare surgical outcomes of patients with transected and in-continuity high ulnar nerve lesions following SETS AIN transfer. METHODS: Between June 2015 and May 2023, patients with high ulnar palsy in the form of transection injuries or lesion-in-continuity were recruited. The assessment encompassed several objective results, including grip strength, key pinch strength, compound muscle action potential, sensory nerve action potential, and two-point discrimination tests. The muscle power of finger abduction and adduction was also recorded. Additionally, subjective questionnaires were utilized to collect data on patient-reported outcomes. Overall, the patients were followed up for up to 2 years. RESULTS: Patients with transected high ulnar nerve lesions exhibited worse baseline performance than those with lesion-in-continuity, including motor and sensory functions. However, they experienced greater motor improvement but less sensory recovery, resulting in comparable final motor outcomes in both groups. In contrast, the transection group showed worse sensory outcomes. CONCLUSIONS: Our findings suggest that SETS AIN transfer benefits patients with high ulnar nerve palsy, regardless of the lesion type. Nonetheless, improvements may be more pronounced in patients with transected lesions.

2.
Front Neurol ; 15: 1348038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633538

RESUMO

Background: Several studies have confirmed the direct relationship between extracellular acidification and the occurrence of pain. As an effective pain management approach, the mechanism of electroacupuncture (EA) treatment of acidification-induced pain is not fully understood. The purpose of this study was to assess the analgesic effect of EA in this type of pain and to explore the underlying mechanism(s). Methods: We used plantar injection of the acidified phosphate-buffered saline (PBS; pH 6.0) to trigger thermal hyperalgesia in male Sprague-Dawley (SD) rats aged 6-8 weeks. The value of thermal withdrawal latency (TWL) was quantified after applying EA stimulation to the ST36 acupoint and/or chemogenetic control of astrocytes in the hindlimb somatosensory cortex. Results: Both EA and chemogenetic astrocyte activation suppressed the acid-induced thermal hyperalgesia in the rat paw, whereas inhibition of astrocyte activation did not influence the hyperalgesia. At the same time, EA-induced analgesia was blocked by chemogenetic inhibition of astrocytes. Conclusion: The present results suggest that EA-activated astrocytes in the hindlimb somatosensory cortex exert an analgesic effect on acid-induced pain, although these astrocytes might only moderately regulate acid-induced pain in the absence of EA. Our results imply a novel mode of action of astrocytes involved in EA analgesia.

3.
PLoS One ; 19(3): e0298626, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483928

RESUMO

High-density waste drilling fluid contains an abundance of recyclable weighting reagents, direct disposal can pollute the environment. In this paper, the primary mineral composition of a high-density waste drilling fluid from a well in the southwest oil and gas field was analyzed. This paper proposes ß-cyclodextrin (ß-CD) as a depressant for the recovery of barite from waste drilling fluid. The recovery process was investigated through inverse flotation experiments, and the mechanism was analyzed using zeta potential, contact angle analysis, and FTIR. The flotation experiments showed that under the SDS flotation system, when the pH was 9.0 and the amount of depressant ß-CD was 900 g/t, the barite recovery and density reached the highest values, which were 87.41% and 4.042 g/cm3, respectively. Zeta potential experiments, contact angle analysis, and FTIR analysis indicate that ß-CD adsorbed onto barite through enhancing the hydrophilicity of barite, electrostatic force adsorption, and strong adsorption, which could not be displayed by SDS through competitive adsorption. Furthermore, ß-CD exhibited a selective inhibitory effect on barite and enabled reverse flotation. The mechanism model of the flotation separation process was established.


Assuntos
Sulfato de Bário , Adsorção
4.
Phytomedicine ; 128: 155431, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38537440

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) remains at the forefront of new cancer cases, and there is an urgent need to find new treatments or improve the efficacy of existing therapies. In addition to the application in the field of cerebrovascular diseases, recent studies have revealed that tanshinone IIA (Tan IIA) has anticancer activity in a variety of cancers. PURPOSE: To investigate the potential anticancer mechanism of Tan IIA and its impact on immunotherapy in NSCLC. METHODS: Cytotoxicity and colony formation assays were used to detect the Tan IIA inhibitory effect on NSCLC cells. This research clarified the mechanisms of Tan IIA in anti-tumor and programmed death-ligand 1 (PD-L1) regulation by using flow cytometry, transient transfection, western blotting and immunohistochemistry (IHC) methods. Besides, IHC was also used to analyze the nuclear factor of activated T cells 1 (NFAT2) expression in NSCLC clinical samples. Two animal models including xenograft mouse model and Lewis lung cancer model were used for evaluating tumor suppressive efficacy of Tan IIA. We also tested the efficacy of Tan IIA combined with programmed cell death protein 1 (PD-1) inhibitors in Lewis lung cancer model. RESULTS: Tan IIA exhibited good NSCLC inhibitory effect which was accompanied by endoplasmic reticulum (ER) stress response and increasing Ca2+ levels. Moreover, Tan IIA could suppress the NFAT2/ Myc proto oncogene protein (c-Myc) signaling, and it also was able to control the Jun Proto-Oncogene(c-Jun)/PD-L1 axis in NSCLC cells through the c-Jun N-terminal kinase (JNK) pathway. High NFAT2 levels were potential factors for poor prognosis in NSCLC patients. Finally, animal experiments data showed a stronger immune activation phenotype, when we performed treatment of Tan IIA combined with PD-1 monoclonal antibody. CONCLUSION: The findings of our research suggested a novel mechanism for Tan IIA to inhibit NSCLC, which could exert anti-cancer effects through the JNK/NFAT2/c-Myc pathway. Furthermore, Tan IIA could regulate tumor PD-L1 levels and has the potential to improve the efficacy of PD-1 inhibitors.

5.
BMC Geriatr ; 24(1): 222, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439017

RESUMO

BACKGROUND: This study aimed to investigate the association of high-sensitivity C-reactive protein (hs-CRP) with incident frailty as well as its effects on pre-frailty progression and regression among middle-aged and older adults. METHODS: Based on the frailty index (FI) calculated with 41 items, 6890 eligible participants without frailty at baseline from China Health and Retirement Longitudinal Study (CHARLS) were categorized into health, pre-frailty, and frailty groups. Logistic regression models were used to estimate the longitudinal association between baseline hs-CRP and incident frailty. Furthermore, a series of genetic approaches were conducted to confirm the causal relationship between CRP and frailty, including Linkage disequilibrium score regression (LDSC), pleiotropic analysis, and Mendelian randomization (MR). Finally, we evaluated the association of hs-CRP with pre-frailty progression and regression. RESULTS: The risk of developing frailty was 1.18 times (95% CI: 1.03-1.34) higher in participants with high levels of hs-CRP at baseline than low levels of hs-CRP participants during the 3-year follow-up. MR analysis suggested that genetically determined hs-CRP was potentially positively associated with the risk of frailty (OR: 1.06, 95% CI: 1.03-1.08). Among 5241 participants with pre-frailty at baseline, we found pre-frailty participants with high levels of hs-CRP exhibit increased odds of progression to frailty (OR: 1.39, 95% CI: 1.09-1.79) and decreased odds of regression to health (OR: 0.84, 95% CI: 0.72-0.98) when compared with participants with low levels of hs-CRP. CONCLUSIONS: Our results suggest that reducing systemic inflammation is significant for developing strategies for frailty prevention and pre-frailty reversion in the middle-aged and elderly population.


Assuntos
Proteína C-Reativa , Fragilidade , Idoso , Humanos , Pessoa de Meia-Idade , Estudos Longitudinais , Proteína C-Reativa/genética , Fragilidade/diagnóstico , Fragilidade/epidemiologia , Fragilidade/genética , Estudos de Coortes , Inflamação
6.
J Pharm Biomed Anal ; 242: 116014, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367517

RESUMO

This study aimed to investigate the absorption of alkaloids from Phellodendri chinensis Cortex (PC) by human renal tubular epithelial cells (HK-2). Cellular uptake and affinity ultrafiltration assays were employed to determine the alkaloid uptake pathway in HK-2 cells. Stemming from the hypothesis that salt-water processed PC introduces these alkaloids into the kidney at a cellular level, this research focused on different processed products of PC that are tailored for renal targeting. Utilizing the UPLC-QqQ-MS method, we quantified variations in the uptake capacity of phellodendrine, magnoflorine, jatrorrhizine, berberrubine, and berberine from raw Phellodendri chinensis Cortex (RPC), salt-water processed Phellodendri chinensis Cortex (SPC), and wine processed Phellodendri chinensis Cortex (WPC) in HK-2 cells. This study also tracked the concentration changes of these five alkaloids in HK-2 cells during the administration phase. Further, we evaluated the influence of two inhibitors on the absorption of these five alkaloids from PC and its processed products into HK-2 cells: the organic anion transporters (OATs) inhibitor-probenecid (PRO), and the organic cationic transporters (OCTs) inhibitor-tetraethylammonium chloride (TEAC). A pivotal component of this research was an investigation into the effects of PC and its processed products on the expression levels of OCT2, OAT1, and OAT3 proteins in HK-2 cells, facilitated by Western blot analysis. Finally, we appraised the binding affinity of PC's alkaloids to OCT2, OAT1, and OAT3 proteins using an ultrafiltration centrifugation technique. The uptake of different processed products of PC by HK-2 cells showed the following trend: SPC group > RPC group > WPC group. When considering inhibitor uptake in HK-2 cells, the group treated with PRO (an OATs inhibitor) demonstrated a higher uptake than the group treated with TEAC (an OCTs inhibitor). It was observed that different processed products of PC elevated the expression of OCT2 and OAT1 proteins in HK-2 cells. Specifically, both the SPC and berberrubine groups displayed enhanced expression of these proteins, with a marked increase noted for OCT2. Through affinity ultrafiltration assays, it was determined that the binding affinity of alkaloids from different processed products of PC to OCT2 and OAT1 significantly exceeded that to OAT3. These results indicate that PC-derived alkaloids are absorbed by HK-2 cells, predominantly through transport mechanisms mediated by OCT2 and OAT1, with OCT2 serving as the dominant transporter. The higher intake of alkaloids in SPC group can likely be linked to the amplified activity of kidney uptake transporters.


Assuntos
Alcaloides , Humanos , Alcaloides/metabolismo , Transporte Biológico , Rim/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Células Epiteliais/metabolismo , Água
7.
Analyst ; 149(5): 1489-1495, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38314794

RESUMO

A novel cyclooxygenase-2 (COX-2) targeted H2S-activated cancer-specific fluorescent probe, namely, COX2-H2S, was designed and synthesized, with naphthalimide as the fluorophore and indomethacin as the targeting group. This H2S-sensing probe was developed to differentiate tumor cells from normal cells and was tested in living cells, Caenorhabditis elegans (C. elegans), and zebrafish. The probe could successfully be used for imaging endogenous and exogenous H2S in living cells, demonstrating high sensitivity and specificity and strong anti-interference. COX2-H2S had the ability to not only discern cancer cells from normal cells but also specifically recognize 9L/lacZ cells from other glioblastoma cells (U87-MG and LN229). It could also be successfully applied for the fluorescent live imaging of H2S in both C. elegans and zebrafish.


Assuntos
Sulfeto de Hidrogênio , Neoplasias , Animais , Humanos , Caenorhabditis elegans , Ciclo-Oxigenase 2 , Corantes Fluorescentes , Sulfeto de Hidrogênio/análise , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Peixe-Zebra , Linhagem Celular Tumoral
8.
Phytochemistry ; 220: 114018, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342288

RESUMO

Steroidal alkaloids are the main bioactive components of the bulbs of Fritillaria, which have been used as traditional Chinese medicine, known as "Beimu", for the treatment of cough for thousands of years in China. Cough and dyspnea are the most common symptoms observed in patients with pulmonary fibrosis. However, the antifibrotic activity of steroidal alkaloids has not been reported yet. In this study, two previously unreported cevanine-type steroidal alkaloids (1 and 2), four previously undescribed cevanine-type alkaloid glycosides (3-6), and 19 known steroidal alkaloids (7-25) were isolated from the bulbs of Fritillaria unibracteata var. wabuensis. The structures of these compounds were elucidated by comprehensive HRESIMS and NMR spectroscopic data analysis, as well as DP4+ NMR calculations. The biological evaluation showed that compounds 2, 7-10, 14, 15, and 17 downregulated fibrotic markers induced by transforming growth factor-ß (TGF-ß) in MRC-5 cells. Moreover, compounds 14 and 17 dose dependently inhibited TGF-ß-induced epithelial-mesenchymal transition in A549 cells, alleviated TGF-ß-induced migration and proliferation of fibroblasts, and decreased the expression of fibrotic markers, fibronectin, and N-cadherin in TGF-ß-induced MRC-5 cells. The research showed the potential of cevanine-type alkaloids as a class of natural antifibrotic agents.


Assuntos
Alcaloides , Fritillaria , Humanos , Fritillaria/química , Alcaloides/química , Raízes de Plantas/química , Tosse , Esteroides/química , Fator de Crescimento Transformador beta/análise
9.
Bioact Mater ; 35: 67-81, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38312517

RESUMO

Hypoxia, excessive reactive oxygen species (ROS), and impaired angiogenesis are prominent obstacles to wound healing following trauma and surgical procedures, often leading to the development of keloids and hypertrophic scars. To address these challenges, a novel approach has been proposed, involving the development of a cascade enzymatic reaction-based nanocarriers-laden wound dressing. This advanced technology incorporates superoxide dismutase modified oxygen nanobubbles and catalase modified oxygen nanobubbles within an alginate hydrogel matrix. The oxygen nano chamber functions through a cascade reaction between superoxide dismutase and catalase, wherein excessive superoxide in the wound environment is enzymatically decomposed into hydrogen peroxide, and this hydrogen peroxide is subsequently converted into oxygen by catalase. This enzymatic cascade effectively controls wound inflammation and hypoxia, mitigating the risk of keloid formation. Concurrently, the oxygen nanobubbles release oxygen continuously, thus providing a sustained supply of oxygen to the wound site. The oxygen release from this dynamic system stimulates fibroblast proliferation, fosters the formation of new blood vessels, and contributes to the overall wound healing process. In the rat full-thickness wound model, the cascade reaction-based nano oxygen chamber displayed a notable capacity to expedite wound healing without scarring. Furthermore, in the pilot study of porcine full-thickness wound healing, a notable acceleration of tissue repair was observed in the conceived cascade reaction-based gel treated group within the 3 days post-surgery, which represents the proliferation stage of healing process. These achievements hold significant importance in ensuring the complete functional recovery of tissues, thereby highlighting its potential as a promising approach for enhancing wound healing outcomes.

10.
ACS Appl Mater Interfaces ; 16(7): 9303-9312, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38343044

RESUMO

Daytime radiative cooling technology offers a low-carbon, environmentally friendly, and nonpower-consuming approach to realize building energy conservation. It is important to design materials with high solar reflectivity and high infrared emissivity in atmospheric windows. Herein, a porous calcium silicate composite SiO2 aerogel water-borne coating with strong passive radiative cooling and high thermal insulation properties is proposed, which shows an exceptional solar reflectance of 94%, high sky window emissivity of 96%, and 0.0854 W/m·K thermal conductivity. On the SiO2/CaSiO3 radiative cooling coating (SiO2-CS-coating), a strategy is proposed to enhance the atmospheric window emissivity by lattice resonance, which is attributed to the eight-membered ring structure of porous calcium silicate, thereby increasing the atmospheric window emissivity. In the daytime test (solar irradiance 900W/m2, ambient temperature 43 °C, wind speed 0.53 m/s, humidity 25%), the temperature inside the box can achieve a cooling temperature of 13 °C lower than that of the environment, which is 30 °C, and the theoretical cooling power is 96 W/m2. Compared with the commercial white coating, SiO2-CS-coating can save 70 kW·h of electric energy in 1 month, and the energy consumption is reduced by 36%. The work provides a scalable, widely applicable radiative-cooling coating for building comfort, which can greatly reduce indoor temperatures and is suitable for building surfaces.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38349421

RESUMO

PURPOSE: To compare corneal haze between active ulcer and healed scarring using a Scheimpflug densitometry. MATERIALS AND METHODS: A prospective longitudinal study enrolled 30 patients (30 eyes) with ulcerative keratitis (UK). Each subject's corneal optical density (COD) was measured with a Scheimpflug corneal densitometry, Pentacam® AXL (Oculus GmbH, Wetzlar, Germany), at the active ulcerative and complete scarring stage. The COD data were analyzed through distinct methods (inbuilt, sorted annular partitions, and ulcer-matching densitometric maps). We compared different CODs to select the better index for clinically monitoring the transition from corneal ulceration to healed scar. RESULTS: The CODs of the periphery (P = 0.0024) and outside of the active ulcer (P = 0.0002) significantly decreased after scarring. Partitioning the cornea into different depths and annular zones, the anterior layer, center layer, and the 2-6 mm annular zone had a more remarkable COD decrease after scar formation. The 3rd-sorted COD in the anterior layer revealed the highest area under the receiver-operating characteristic curves (0.709), in which 90% of subjects had COD reduction during the ulcer-to-scar transition. CONCLUSIONS: Aside from subjective judgment based on clinical signs, the Scheimpflug tomography-based densitometry could provide objective and efficient monitoring of the corneal opacity evolution in UK patients. Because the 3rd-sorted annular COD is a better index than the inbuilt or mapping CODs in differentiating active ulcers from healed scars, this COD could be a clinically promising parameter to monitor the progression of UK patients.

12.
Chin J Integr Med ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329654

RESUMO

Activation of the NOD-like receptor protein 3 (NLRP3) inflammasome signaling pathway is an important mechanism underlying myocardial pyroptosis and plays an important role in inflammatory damage to myocardial tissue in patients with cardiovascular diseases (CVDs), such as diabetic cardiomyopathy, ischemia/reperfusion injury, myocardial infarction, heart failure and hypertension. Noncoding RNAs (ncRNAs) are important regulatory factors. Many Chinese medicine (CM) compounds, including their effective components, can regulate pyroptosis and exert myocardium-protecting effects. The mechanisms underlying this protection include inhibition of inflammasome protein expression, Toll-like receptor 4-NF-κB signal pathway activation, oxidative stress, endoplasmic reticulum stress (ERS), and mixed lineage kinase 3 expression and the regulation of silent information regulator 1. The NLRP3 protein is an important regulatory target for CVD prevention and treatment with CM. Exploring the effects of the interventions mediated by CM and the related mechanisms provides new ideas and perspectives for CVD prevention and treatment.

13.
Nursing ; 54(3): 30-38, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38386448

RESUMO

ABSTRACT: Debridement is a core component of chronic wound management. Although various debridement methods exist, each carries a unique patient risk level. This article discusses the different normal tissue components that are critical to safe debridement practice, various methods of wound debridement for nurses, and the importance of an interprofessional team and consulting a wound specialist.


Assuntos
Desbridamento , Humanos
14.
Huan Jing Ke Xue ; 45(1): 376-385, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216487

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a class of persistent organic pollutants that have attracted much attention in recent years, which has the characteristics of diverse species, refractory degradation, long-distance transportation, easy bioaccumulation, etc. The distribution, accumulation, and potential toxicity of PFAS in water and organisms have received extensive attention worldwide. However, studies on PFAS distribution and transportation in soil are still hovering at a preliminary stage. The PFAS pollution surveys in Chinese soils are mainly concentrated in the economically developed eastern regions. The types and concentrations of PFAS in soils are directly related to the industrial types, atmospheric deposition, and human activities in these surveyed areas, which are similar to foreign soil surveys. Traditional perfluoro carboxylic acid (PFCAs) and perfluoro octane sulfonate (PFSAs) are the most important types of PFAS in Chinese soils. This study reviewed the distribution characteristics, transportation pathways, and influencing factors of PFAS in Chinese soils, as well as domestic and foreign control policies on PFAS pollution. Meanwhile, this study further pointed out the shortcomings of the current research on the distribution and control of PFAS in soil in order to provide a reference for the investigation, research, and control of PFAS pollution in Chinese soils.

15.
Bioorg Chem ; 144: 107111, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218068

RESUMO

To mine fascinating molecules from the rhizomes of Atractylodes chinensis, the known molecular formula of atrachinenin A was used as a bait to search LC-HRMS data in different subfractions. Sixteen new meroterpenoids, atrachinenins D-S (1-16) including three unprecedented carbon skeletons (1-5) and eleven new oxygen-bridged hybrids (6-16) were obtained by the targeted isolation. Their structures and absolute configurations were elucidated by the spectroscopic data and electronic circular dichroism (ECD) calculations. The isolated compounds were evaluated for their inhibitory activity of NO production and compounds 1, 4, 8, and 13 showed moderate anti-inflammatory activity. The proposed biosynthetic pathways of 1-5 were also discussed.


Assuntos
Atractylodes , Atractylodes/química , Hidroquinonas , Anti-Inflamatórios , Dicroísmo Circular , Estrutura Molecular
16.
Sci Total Environ ; 915: 169949, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38220004

RESUMO

Spatial arrangement is a key factor in maintaining community yield and stability via regulating component intra-/interspecific competition in an alpine climate environment. A 2-yr field trial was conducted on the Qinghai Tibetan Plateau, including cross row (S_C), double row (S_D), single row (S_R), broadcast (M_B), dependent row (M_D) and independent row (M_I). Our results showed that S_C could avoid intraspecific competition by reasonable spatial arrangement, which favored the dominant component growth (1st year: leaf; 2nd year: stem and reproductive organ). For mixed communities, RII (relative interaction intensity) implied that interspecific competition also embodied on dominant component, and higher Elymus nutans component advantages seriously limited Onobrychis viciifolia's components growth in the 2nd year. More details displayed that E. nutans in M_B or M_D produced the maximum system yield via increasing leaf investment at the initial stages and stem investment after July 2019. Besides, M_I possessed lower component numbers than M_B and M_D in the unit area. PCA analysis revealed that component numbers or biomasses changed synchronously, besides the E. nutans of S_C, M_B, and M_D presented significant discrepancies compared to other treatments in September 2019, which verified the effect of sowing patterns on component growth (P < 0.05), but O. viciifolia in different sowing patterns was similar in the 2nd year. Considering the adaptability and production for the environment of the Qinghai Tibetan Plateau, S_C is recommended for the promoted effect on component biomasses. M_B and M_D, with the merit of spacing utilization as well as higher resistance to variation in seasonal growth conditions via optimizing interspecific relationships for mixed communities, are adapted for increasing yield via component harvesting. Our results unveiled the potential of optimizing spatial usage efficiency via controlling component growth characteristics and stressed the importance of dynamic change of dominant components to enhance forage system production in alpine regions.


Assuntos
Elymus , Tibet , Pradaria , Clima , Biomassa
17.
Phytother Res ; 38(1): 214-230, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37859562

RESUMO

Osteoporosis is a chronic progressive bone disease characterized by the decreased osteogenic ability of osteoblasts coupled with increased osteoclast activity. Natural products showing promising therapeutic potential for postmenopausal osteoporosis remain underexplored. In this study, we aimed to analyze the therapeutic effects of isoliquiritin (ISL) on osteoporosis in mice and its possible mechanism of action. An ovariectomy-induced osteoporosis mouse model and bone marrow mesenchymal stem cells (BMSCs) were used to analyze the effects of ISL on bone regeneration in vivo and in vitro, respectively. Mitogen-activated protein kinase (MAPK) and autophagy inhibitors were used, to investigate whether the MAPK signaling pathway and autophagy affect the osteogenic differentiation of BMSCs. ISL significantly improved bone formation and reduced bone resorption in mouse femurs without inducing any detectable toxicity in critical organs such as the liver, kidney, brain, heart, and spleen. In vitro experiments showed that ISL enhanced the proliferation and osteogenic differentiation of BMSCs and that its osteogenic effect was attenuated by p38/extracellular regulated protein kinase (ERK) and autophagy inhibitors. Further studies showed that the inhibition of phosphorylated p38/ERK blocked ISL autophagy in BMSCs. ISL promoted the osteogenic differentiation of BMSCs through the p38/ERK-autophagy pathway and was therapeutically effective in treating osteoporosis in ovariectomized mice without any observed toxicity to vital organs. These results strongly suggest the promising potential of ISL as a safe and efficacious candidate drug for the treatment of osteoporosis.


Assuntos
Chalcona/análogos & derivados , Glucosídeos , Células-Tronco Mesenquimais , Osteoporose , Feminino , Camundongos , Animais , Osteogênese , Células Cultivadas , Diferenciação Celular , Osteoporose/tratamento farmacológico , Autofagia , Células da Medula Óssea/metabolismo
18.
Acta Pharmacol Sin ; 45(1): 180-192, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37644132

RESUMO

Adhesion molecules play essential roles in the homeostatic regulation and malignant transformation of hematopoietic cells. The dysregulated expression of adhesion molecules in leukemic cells accelerates disease progression and the development of drug resistance. Thus, targeting adhesion molecules represents an attractive anti-leukemic therapeutic strategy. In this study, we investigated the prognostic role and functional significance of cytohesin-1 (CYTH1) in acute myeloid leukemia (AML). Analysis of AML patient data from the GEPIA and BloodSpot databases revealed that CYTH1 was significantly overexpressed in AML and independently correlated with prognosis. Functional assays using AML cell lines and an AML xenograft mouse model confirmed that CYTH1 depletion significantly inhibited the adhesion, migration, homing, and engraftment of leukemic cells, delaying disease progression and prolonging animal survival. The CYTH1 inhibitor SecinH3 exerted in vitro and in vivo anti-leukemic effects by disrupting leukemic adhesion and survival programs. In line with the CYTH1 knockdown results, targeting CYTH1 by SecinH3 suppressed integrin-associated adhesion signaling by reducing ITGB2 expression. SecinH3 treatment efficiently induced the apoptosis and inhibited the growth of a panel of AML cell lines (MOLM-13, MV4-11 and THP-1) with mixed-lineage leukemia gene rearrangement, partly by reducing the expression of the anti-apoptotic protein MCL1. Moreover, we showed that SecinH3 synergized with the BCL2-selective inhibitor ABT-199 (venetoclax) to inhibit the proliferation and promote the apoptosis of ABT-199-resistant leukemic cells. Taken together, our results not only shed light on the role of CYTH1 in cell-adhesion-mediated leukemogenesis but also propose a novel combination treatment strategy for AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Leucemia Mieloide Aguda/tratamento farmacológico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Moléculas de Adesão Celular , Progressão da Doença , Linhagem Celular Tumoral
19.
J Diabetes Investig ; 15(1): 78-86, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37803908

RESUMO

BACKGROUND: This study aimed to investigate the effect of systemic inflammation, assessed by high sensitivity C-reactive protein (hs-CRP) levels, on prediabetes progression and regression in middle-aged and older adults based on the China Health and Retirement Longitudinal Study (CHARLS). METHODS: Participants with prediabetes from CHARLS were followed up 4 years later with blood samples collected for measuring fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c). The level of hs-CRP was assessed at baseline and categorized into tertiles (low, middle, and high groups). Prediabetes at baseline and follow-up was defined primarily according to the American Diabetes Association (ADA) criteria. Logistic regression models were used to estimate the odds ratios (ORs) and confidence intervals (CIs). We also performed stratified analyses according to age, gender, BMI, the presence of hypertension, and the disease history of heart disease and dyslipidemia and sensitivity analyses excluding a subset of participants with incomplete data. RESULTS: Of the 2,874 prediabetes included at baseline, 834 participants remained as having prediabetes, 146 progressed to diabetes, and 1,894 regressed to normoglycemia based on ADA criteria with a 4 year follow-up. After multivariate logistics regression analysis, prediabetes with middle (0.67-1.62 mg/L) and high (>1.62 mg/L) hs-CRP levels had an increased incidence of progressing to diabetes compared with prediabetes with low hs-CRP levels (<0.67 mg/L; OR = 1.846, 95%CI: 1.129-3.018; and OR = 1.632, 95%CI: 0.985-2.703, respectively), and the incidence of regressing to normoglycemia decreased (OR = 0.793, 95%CI: 0.645-0.975; and OR = 0.769, 95%CI: 0.623-0.978, respectively). Stratified analyses and sensitivity analyses showed consistent results. CONCLUSIONS: Low levels of hs-CRP are associated with a high incidence of regression from prediabetes to normoglycemia and reduced odds of progression to diabetes.


Assuntos
Estado Pré-Diabético , Pessoa de Meia-Idade , Humanos , Idoso , Proteína C-Reativa/metabolismo , Glicemia/análise , Estudos Longitudinais , Estudos Prospectivos , Fatores de Risco
20.
Eur J Med Chem ; 263: 115794, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37984295

RESUMO

The synthesis and evaluation of small-molecule inhibitors of tubulin polymerization remains a promising approach for the development of new therapeutic agents for cancer treatment. The natural products colchicine and combretastatin A-4 (CA4) inspired significant drug discovery campaigns targeting the colchicine site located on the beta-subunit of the tubulin heterodimer, but so far these efforts have not yielded an approved drug for cancer treatment in human patients. Interest in the colchicine site was enhanced by the discovery that a subset of colchicine site agents demonstrated dual functionality as both potent antiproliferative agents and effective vascular disrupting agents (VDAs). Our previous studies led to the discovery and development of a 2-aryl-3-aroyl-indole analogue (OXi8006) that inhibited tubulin polymerization and demonstrated low nM IC50 values against a variety of human cancer cell lines. A water-soluble phosphate prodrug salt (OXi8007), synthesized from OXi8006, displayed promising vascular disrupting activity in mouse models of cancer. To further extend structure-activity relationship correlations, a series of 6-aryl-3-aroyl-indole analogues was synthesized and evaluated for their inhibition of tubulin polymerization and cytotoxicity against human cancer cell lines. Several structurally diverse molecules in this small library were strong inhibitors of tubulin polymerization and of MCF-7 and MDA-MB-231 human breast cancer cells. One of the most promising analogues (KGP591) caused significant G2/M arrest of MDA-MB-231 cells, disrupted microtubule structure and cell morphology in MDA-MB-231 cells, and demonstrated significant inhibition of MDA-MB-231 cell migration in a wound healing (scratch) assay. A phosphate prodrug salt, KGP618, synthesized from its parent phenolic precursor, KGP591, demonstrated significant reduction in bioluminescence signal when evaluated in vivo against an orthotopic model of kidney cancer (RENCA-luc) in BALB/c mice, indicative of VDA efficacy. The most active compounds from this series offer promise as anticancer therapeutic agents.


Assuntos
Antineoplásicos , Pró-Fármacos , Camundongos , Animais , Humanos , Tubulina (Proteína)/metabolismo , Pró-Fármacos/farmacologia , Polimerização , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Relação Estrutura-Atividade , Antineoplásicos/química , Colchicina/farmacologia , Moduladores de Tubulina/química , Indóis/química , Fosfatos/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...