Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.072
Filtrar
1.
J Sep Sci ; 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35524724

RESUMO

A method is firstly established for the separation and determination of fenpropathrin enantiomer residues in apple puree, strawberry puree, and tomato puree considered as a supplementary food for infants by supercritical fluid chromatography. After the sample was extracted with acetonitrile and cleaned up by a solid phase extraction column, then it's separated by a CHIRALPAK AD-3 chiral column with a gradient elution at a flow rate of 1.0 mL/min using methanol and supercritical carbon dioxide as the mobile phase, detected by ultraviolet detector at 230 nm wavelength and quantified with the external standard method. The limits of quantification of the two fenpropathrin enantiomers were both 0.2 mg/kg, the linear ranges were 1.0-20.0 mg/L with linear correlation coefficients greater than 0.9992, the recoveries in the spiked samples at 0.2, 0.4 and 2.0 mg/kg were from 80.6% to 105%, and the relative standard deviation reached 2.6%-7.7%. This method has the advantages of convenient operation, good resolution and environmental protection, which can satisfy the requirement of determination for fenpropathrin enantiomer residues in fruit and vegetable puree as a supplementary food for infants. This article is protected by copyright. All rights reserved.

2.
Inorg Chem ; 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35500301

RESUMO

When a multicarboxylate aromatic ligand, 3,5-di(2',4'-dicarboxylphenyl)benzoic acid (H5L), was employed, five structurally similar lanthanide metal-organic frameworks (Ln-MOFs), {[Pr10L6(OH)3Cl(H2O)6]·4C2H8N}n (1), {[Nd10L6(OH)4 (H2O)9]·4C2H8N}n (2), {[Gd10L6(OH)4(H2O)3]·4C2H8N}n (3), {[Ho10L6(OH)4 (H2O)3]·4C2H8N}n (4) and {[Er10L6(OH)4(H2O)6]·4C2H8N}n (5), were synthesized and characterized. Single-crystal X-ray structural analyses disclosed that all five Ln-MOFs crystallize in the trigonal R3 space group. They have three-dimensional mesoporous structure featuring the coexistence of binuclear and tetranuclear species as inorganic building units. The mesoporous structure of 3 was verified by the gas adsorption experiment of N2. Fluorescence analysis showed that 3 can selectively detect Fe3+, Cr2O72-, and H2O2; furthermore, it can be used for the electrochemical detection of trinitrophenol. With the merit of an excellent highly sensitive detection performance, 3 has unpredictable application prospects in future research fields.

4.
Plant Divers ; 44(2): 153-162, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35505982

RESUMO

Spurs have played an important role in the radiation of the genus Aquilegia, but little is known about how the spurless state arose in A. ecalcarata. Here we aim to characterize the genetic divergence within A. ecalcarata and gain insights into the origin of this species. A total of 19 populations from A. ecalcarata and 23 populations from three of its closest relatives (Aquilegia kansuensis, Aquilegia rockii and Aquilegia yabeana) were sampled in this study. We sequenced fifteen nuclear gene fragments across the genome and three chloroplast loci to conduct phylogenetic, PCoA and STRUCTURE analyses. Our analyses indicate that A. ecalcarata may not be monophyletic and can be divided into two distinct lineages (A. ecalcarata I and A. ecalcarata II). A. ecalcarata I is genetically close to A. kansuensis, whereas A. ecalcarata II is close to A. rockii. Isolation-with-migration analysis suggested that historical gene flow was low between A. ecalcarata I and A. rockii, as well as between A. ecalcarata II and A. kansuensis. The two distinct lineages of A. ecalcarata show significant divergence in 13 floral traits and also have distinct distributions. In addition, both A. ecalcarata I and II are adapted to a stony environment that differs from that of their closest relatives, indicating a habitat shift may have driven new adaptations. Our findings enrich the understanding of how floral evolution contributes to species diversification.

5.
PLoS One ; 17(5): e0267974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507633

RESUMO

INTRODUCTION: In order to study the role of the microbiome in hematopoietic stem cell transplantation (HCT), researchers collect stool samples from patients at various time points throughout HCT. However, stool collection requires active subject participation and may be limited by patient reluctance to handling stool. METHODS: We performed a prospective study on the impact of financial incentives on stool collection rates. The intervention group consisted of allogeneic HCT patients from 05/2017-05/2018 who were compensated with a $10 gas gift card for each stool sample. The intervention group was compared to a historical control group of allogeneic HCT patients from 11/2016-05/2017 who provided stool samples before the incentive was implemented. To control for possible changes in collections over time, we also compared a contemporaneous control group of autologous HCT patients from 05/2017-05/2018 with a historical control group of autologous HCT patients from 11/2016-05/2017; neither autologous HCT group was compensated. The collection rate was defined as the number of samples provided divided by the number of time points we attempted to obtain stool. RESULTS: There were 35 allogeneic HCT patients in the intervention group, 19 allogeneic HCT patients in the historical control group, 142 autologous HCT patients in the contemporaneous control group (that did not receive a financial incentive), and 75 autologous HCT patients in the historical control group. Allogeneic HCT patients in the intervention group had significantly higher average overall collection rates when compared to the historical control group allogeneic HCT patients (80% vs 37%, p<0.0001). There were no significant differences in overall average collection rates between the autologous HCT patients in the contemporaneous control and historical control groups (36% vs 32%, p = 0.2760). CONCLUSION: Our results demonstrate that a modest incentive can significantly increase collection rates. These results may help to inform the design of future studies involving stool collection.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Microbiota , Adulto , Transplante de Medula Óssea/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Motivação , Estudos Prospectivos , Condicionamento Pré-Transplante/métodos , Transplante Autólogo , Transplante Homólogo
6.
Sci Rep ; 12(1): 7396, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513463

RESUMO

Pachypleurosaurs (Pachypleurosauroidea) are a group of small to medium-sized, lizard-like marine reptiles in the Early to Middle Triassic, including Pachypleurosauridae, Keichousauridae and closely related taxa. The group is generally considered as a sauropterygian radiation, but its phylogenetic interrelationships remain highly debated. Here, we present a new pachypleurosaurid, Honghesaurus longicaudalis gen. et sp. nov., from the early Middle Triassic (Anisian, ~ 244 Ma) marine deposits in Luxi, Yunnan, China. The discovery documents the first really long-tailed pachypleurosaur with totally 121 (69 caudal) vertebrae, providing new evidence for the vertebral multiplication and ecological adaption of this group. The long trunk associated with an incredibly long tail could provide Honghesaurus the advantage of maneuverability and energy efficiency for lateral undulatory swimming. Honghesaurus, although possessing a series of autapomorphies, fills the morphological gap between Qianxisaurus from the Ladinian Xingyi Biota and Wumengosaurus from the Anisian Panxian Biota. Phylogenetic studies unite these three pachypleurosaurids as a monophyletic clade above European pachypleurosaurid clades and provide new insights into the interrelationships of this group. Our scenario of pachypleurosaurian phylogeny combined with the stratigraphic data imply that the Tethys Ocean was a west-east corridor for dispersal of pachypleurosaurids from Europe into South China.

8.
J Am Coll Surg ; 234(5): 760-771, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35426388

RESUMO

BACKGROUND: Women of color with breast cancer are less likely to undergo post-mastectomy reconstruction compared with White women, but it is unclear whether their perioperative outcomes are worse. The goal of this study was to investigate differences in preoperative comorbidities and postoperative complications by race/ethnicity among women with breast cancer undergoing postmastectomy reconstruction. STUDY DESIGN: Data were collected from the National Inpatient Sample database of the Healthcare Cost and Utilization Project from 2012 to 2016. Patient demographics, types of reconstruction, comorbid conditions, Charlson-Deyo Combined Comorbidity (CDCC) scores, length of stay (LOS), and perioperative complications were abstracted. Multivariate linear and logistic regression were performed to model LOS and likelihood of postoperative complications, respectively. RESULTS: Compared with White women (n = 19,730), Black women (n = 3,201) underwent autologous reconstruction more frequently (40.7% vs 28.3%), had more perioperative comorbidities (eg diabetes: 12.9% vs 5.8%), higher CDCC scores (% CDCC ≥ 4: 5.5% vs 2.7%), and longer LOS (median 3 vs 2 days, all p < 0.001). Being Black (vs White: +0.13 adjusted days, 95% CI 0.06 to 0.19) was also associated with longer LOS and an increased likelihood of surgical complications (vs White: odds ratio 1.24, 95% CI 1.09 to 1.42, both p < 0.01), but this association did not persist when outcomes were limited to microsurgical complications. CONCLUSION: Disparities in postmastectomy breast reconstruction between Black and White women extend beyond access to care and include perioperative factors and outcomes. These findings suggest an important opportunity to mitigate inequities in reconstruction through perioperative health optimization and improved access to and co-management with primary care.


Assuntos
Neoplasias da Mama , Mamoplastia , Neoplasias da Mama/cirurgia , Feminino , Disparidades em Assistência à Saúde , Humanos , Masculino , Mastectomia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Estados Unidos
9.
Bioengineered ; 13(4): 10802-10810, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35475417

RESUMO

Mounting evidence supports that angiotensin-converting enzyme 2 (ACE2) may exert a vital function in multiple complications induced by diabetes. The aim of this research was to verify the function of ACE2 in diabetic angiopathy (DA). In our study, it was revealed that high glucose (HG) treatment impeded cell proliferation and induced cell apoptosis. Moreover, ACE2 level was reduced in HG-stimulated HMEC-1 cells. Functional assays demonstrated that ACE2 addition promoted cell viability, suppressed apoptosis, oxidative stress, ROS generation, and inflammation in HG-stimulated HMEC-1 cells. Furthermore, the activation of the JAK2/STAT3 pathway induced by HG was impeded by overexpression of ACE2. Besides, JAK2/STAT3 pathway inhibitor AG490 reversed the changes of cell viability, apoptosis, oxidative stress, and inflammation caused by ACE2 deletion in HG-treated HMEC-1 cells. In sum, our findings highlighted that ACE2 promoted the viability and restrained the oxidative stress, inflammation, and apoptosis in HG-induced microvascular endothelial cells (VECs) injury via regulating the JAK2/STAT3 pathway, suggesting ACE2 might be a potential therapeutic target for DA treatment.


Assuntos
Enzima de Conversão de Angiotensina 2 , Células Endoteliais , Enzima de Conversão de Angiotensina 2/genética , Apoptose/genética , Células Endoteliais/metabolismo , Glucose/metabolismo , Glucose/toxicidade , Humanos , Inflamação/genética , Inflamação/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
10.
Purinergic Signal ; 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35478452

RESUMO

Upregulation of P2X3 receptor (P2X3R) has been strongly implicated in nociceptive signaling including bone cancer pain (BCP). The present study, using rat bone cancer model, aimed to explore the role of P2X3R in regulating rat pain behavior under the intervention of electroacupuncture (EA). The BCP model was successfully established by injection with MRMT-1 breast cancer cell into the medullary cavity of left tibia for 3 × 104 cells/3 µL PBS in rats as revealed by obvious bone destruction, decreased paw withdrawal thresholds (PWTs), and reduced paw withdrawal latencies (PWLs). Western blot analyses showed that P2X3R expression was significantly upregulated in ipsilateral lumbar 4-6 (L4-6) dorsal root ganglia (DRG), but the difference not seen in spinal cord dorsal horn (SCDH). With the in-depth study of P2X3R activation, we observed that intrathecal injection of P2X3R agonist α,ß-meATP aggravated MRMT-1 induced BCP, while injection of P2X3R inhibitor A-317491 alleviated pain. Subsequently, we demonstrated that BCP induced mechanical allodynia and thermal hyperalgesia were attenuated after EA treatment. Under EA treatment, total P2X3R protein expression in ipsilateral DRGs was decreased, and it is worth mentioning that decreased expression of P2X3R membrane protein, which indicated that both the expression and membrane trafficking of P2X3R were inhibited by EA. The immunofluorescence assay showed that EA stimulation exerted functions by reducing the expression of P2X3R-positive cells in ipsilateral DRGs of BCP rats. Ca2+ imaging analysis revealed that the EA stimulation decreased the percentage of α,ß-meATP responsive neurons in DRGs and inhibited calcium influx. Notably, the inhibitory effect of EA on mechanical allodynia and nociceptive flinches was abolished by intrathecal injection of α,ß-meATP. These findings demonstrated EA stimulation ameliorated mechanical allodynia and thermal hyperalgesia in rat model of MRMT-1-induced BCP. EA exerts analgesic effect on BCP by reducing the overexpression and functional activity of P2X3R in ipsilateral DRGs of BCP rats. Our work first demonstrates the critical and overall role of P2X3R in EA's analgesia against peripheral sensitization of MRMT-1-induced BCP and further supports EA as a potential therapeutic option for cancer pain in clinic.

11.
Signal Transduct Target Ther ; 7(1): 138, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474215

RESUMO

The current pandemic of COVID-19 is fueled by more infectious emergent Omicron variants. Ongoing concerns of emergent variants include possible recombinants, as genome recombination is an important evolutionary mechanism for the emergence and re-emergence of human viral pathogens. In this study, we identified diverse recombination events between two Omicron major subvariants (BA.1 and BA.2) and other variants of concern (VOCs) and variants of interest (VOIs), suggesting that co-infection and subsequent genome recombination play important roles in the ongoing evolution of SARS-CoV-2. Through scanning high-quality completed Omicron spike gene sequences, 18 core mutations of BA.1 (frequency >99%) and 27 core mutations of BA.2 (nine more than BA.1) were identified, of which 15 are specific to Omicron. BA.1 subvariants share nine common amino acid mutations (three more than BA.2) in the spike protein with most VOCs, suggesting a possible recombination origin of Omicron from these VOCs. There are three more Alpha-related mutations in BA.1 than BA.2, and BA.1 is phylogenetically closer to Alpha than other variants. Revertant mutations are found in some dominant mutations (frequency >95%) in the BA.1. Most notably, multiple characteristic amino acid mutations in the Delta spike protein have been also identified in the "Deltacron"-like Omicron Variants isolated since November 11, 2021 in South Africa, which implies the recombination events occurring between the Omicron and Delta variants. Monitoring the evolving SARS-CoV-2 genomes especially for recombination is critically important for recognition of abrupt changes to viral attributes including its epitopes which may call for vaccine modifications.


Assuntos
COVID-19 , SARS-CoV-2 , Aminoácidos , COVID-19/genética , Genoma Viral/genética , Humanos , Mutação/genética , Recombinação Genética/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
12.
Food Chem ; 387: 132867, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35427866

RESUMO

In this work, a colorimetric sensor array (CSA) for quantitative determination of total acids in apple vinegar during fermentation was constructed. The sensor array was properly designed based on indicators displacement assay (IDA) using three metal ions (Cu2+, Zn2+ and Ni2+) as receptors to organic acids. The time stability results showed that the prepared CSA had good operational stability. Three quantitative models, including one linear (partial least square, PLS) and two nonlinear (support vector regression, SVR and back propagation artificial neural network, BP-ANN) models were used to estimate the content of total acids in fermentation broth of apple vinegar through image analysis. The correlation coefficient (RP), root mean square error of prediction (RMSEP) and residual predictive deviation (RPD) of the better SVR model were 0.8708, 0.0545 and 10.91, respectively. The results implied that the CSA had an excellent potential for quantitative monitoring of total acids in apple vinegar during fermentation.


Assuntos
Ácido Acético , Malus , Ácidos/análise , Colorimetria , Fermentação , Análise dos Mínimos Quadrados
13.
Pathogens ; 11(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35456135

RESUMO

Feline coronavirus (FCoV) infections present as one of two forms: a mild or symptom-less enteric infection (FEC) and a fatal systemic disease termed feline infectious peritonitis (FIP). The lack of epidemiology of FCoV in central China and the reason why different symptoms are caused by viruses of the same serotype have motivated this investigation. Clinical data of 81 suspected FIP cases, 116 diarrhea cases and 174 healthy cases were collected from veterinary hospitals using body cavity effusion or fecal samples. Risk factors, sequence comparison and phylogenetic studies were performed. The results indicated that FIPV was distinguished from FECV in the average hydrophobicity of amino acids among the cleavage sites of furin, as well as the mutation sites 23,531 and 23,537. FIPV included a higher minimal R-X-X-R recognition motif of furin (41.94%) than did FECV (9.1%). The serotype of FCoV was insignificantly correlated with FIP, and the clade 1 and clade 2 strains that appeared were unique to central China. Thus, it is hypothesized that this, along with the latent variables of an antigenic epitope at positions 1058 and 1060, as well as mutations at the S1/S2 sites, are important factors affecting FCoV transmission and pathogenicity.

14.
Front Plant Sci ; 13: 818392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392508

RESUMO

Fruit ripening is a highly complicated process, which is modulated by phytohormones, signal regulators and environmental factors playing in an intricate network that regulates ripening-related genes expression. Although transcriptomics is an effective tool to predict protein levels, protein abundances are also extensively affected by post-transcriptional and post-translational regulations. Here, we used RNA sequencing (RNA-seq) and tandem mass tag (TMT)-based quantitative proteomics to study the comprehensive mRNA and protein expression changes during fruit development and ripening in watermelon, a non-climacteric fruit. A total of 6,226 proteins were quantified, and the large number of quantitative proteins is comparable to proteomic studies in model organisms such as Oryza sativa L. and Arabidopsis. Base on our proteome methodology, integrative analysis of the transcriptome and proteome showed that the mRNA and protein levels were poorly correlated, and the correlation coefficients decreased during fruit ripening. Proteomic results showed that proteins involved in alternative splicing and the ubiquitin proteasome pathway were dynamically expressed during ripening. Furthermore, the spliceosome and proteasome were significantly enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, suggesting that post-transcriptional and post-translational mechanisms might play important roles in regulation of fruit ripening-associated genes expression, which might account for the poor correlation between mRNAs and proteins during fruit ripening. Our comprehensive transcriptomic and proteomic data offer a valuable resource for watermelon research, and provide new insights into the molecular mechanisms underlying the complex regulatory networks of fruit ripening.

15.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409244

RESUMO

Sugars, which are critical osmotic compounds and signalling molecules in plants, and Sugars Will Eventually be Exported Transporters (SWEETs), which constitute a novel family of sugar transporters, play central roles in plant responses to multiple abiotic stresses. In the present study, a member of the SWEET gene family from cucumber (Cucumis sativus L.), CsSWEET2, was identified and characterized. Histochemical analysis of ß-glucuronidase expression in transgenic Arabidopsis plants showed that CsSWEET2 is highly expressed in the leaves; subcellular localization indicated that CsSWEET2 proteins are localized in the plasma membrane and endoplasmic reticulum. Heterologous expression assays in yeast demonstrated that CsSWEET2 encodes an energy-independent hexose/H+ uniporter that can complement both glucose and fructose transport deficiencies. Compared with wild-type Arabidopsis plants, transgenic Arabidopsis plants overexpressing CsSWEET2 had much lower relative electrolyte leakage levels and were much more resistant to cold stress. Sugar content analysis showed that glucose and fructose levels in the transgenic Arabidopsis plants were significantly higher than those in the wild-type plants. Taken together, our results suggest that, by mediating sugar metabolism and compartmentation, CsSWEET2 plays a vital role in improving plant cold tolerance.


Assuntos
Arabidopsis , Cucumis sativus , Arabidopsis/genética , Arabidopsis/metabolismo , Resposta ao Choque Frio , Cucumis sativus/metabolismo , Frutose/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Hexoses/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética
16.
Mediators Inflamm ; 2022: 5515305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399795

RESUMO

Activation of NOD-like receptor (NLR) signaling pathway can promote downstream cytokine and proinflammatory cytokines release, and inflammation induced by excess nutrients leads to renal metabolic injury. How the NLRs influence metabolic progress and then lead to the renal injury remains poorly investigated. Compared with rodents, minipigs are more similar to humans and are more ideal animal models for human disease research. In this study, we established a diabetic minipig model through a high-sugar and high-fat diet combined with streptozotocin (STZ) injection. Blood biological markers and renal pathological markers, expression of NLRP subfamily members (NLRP1 and NLRP3) and their downstream cytokines (precursors of IL-1ß and IL-18 and mature forms of IL-1ß and IL-18), expression of NLRC subfamily members (NLRC1, NLRC2, and NLRC5) and their downstream nuclear factor-κB (NF-κB) signaling pathway molecules (IKKß, IκBα, and NF-κB p65), and inflammatory cytokines (TNF-α and interleukin-6 (IL-6)) were systematically evaluated. The expression of NLRP3 and its downstream cytokine signaling molecules, the precursors of IL-1ß and IL-18, and the mature forms of IL-1ß and IL-18 was significantly upregulated. The expression levels of NLRC1, NLRC2, and NLRC5 and activation of the downstream NF-κB pathway molecules phospho-IKKß, phospho-IκBα, NF-κB p65, and phospho-NF-κB p65 were significantly increased. The TNF-α and IL-6 levels were significantly increased in diabetic pig kidneys. The TGF-ß/Smad signaling molecules, TGF-ß and P-SMAD2/3, were also increased. These results suggested that the metabolic inflammation activated by NLRs might play an important role in diabetic renal injuries.


Assuntos
Diabetes Mellitus , NF-kappa B , Animais , Citocinas/metabolismo , Quinase I-kappa B , Inflamação , Interleucina-18 , Interleucina-6/metabolismo , Rim/metabolismo , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Suínos , Porco Miniatura/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa
17.
Breast Cancer Res Treat ; 193(2): 319-330, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35334008

RESUMO

PURPOSE: Triple-negative breast cancer (TNBC) is a highly heterogeneous disease. Patients with early-stage TNBCs have distinct likelihood of distant recurrence. This study aimed to develop a prognostic signature of early-stage TNBC patients to improve risk stratification. METHODS: Using RNA-sequencing data, we analyzed 189 pathologically confirmed pT1-2N0M0 TNBC patients and identified 21 mRNAs that were highly expressed in tumor and related to relapse-free survival. All-subset regression program was used for constructing a 7-mRNA signature in the training set (n = 159); the accuracy and prognostic value were then validated using an independent validation set (n = 158). RESULTS: Here, we profiled the transcriptome data from 189 early-stage TNBC patients along with 50 paired normal tissues. Early-stage TNBCs mainly consisted of basal-like immune-suppressed subtype and had higher homologous recombination deficiency scores. We developed a prognostic signature including seven mRNAs (ACAN, KRT5, TMEM101, LCA5, RPP40, LAGE3, CDKL2). In both the training (n = 159) and validation set (n = 158), this signature could identify patients with relatively high recurrence risks and served as an independent prognostic factor. Time-dependent receiver operating curve showed that the signature had better prognostic value than traditional clinicopathological features in both sets. Functionally, we showed that TMEM101 promoted cell proliferation and migration in vitro, which represented a potential therapeutic target. CONCLUSIONS: Our 7-mRNA signature could accurately predict recurrence risks of early-stage TNBCs. This model may facilitate personalized therapy decision-making for early-stage TNBCs individuals.

18.
Artigo em Inglês | MEDLINE | ID: mdl-35270194

RESUMO

Arsenic (As) in leafy vegetables may harm humans. Herein, we assessed As accumulation in leafy vegetables and the associated physiological resistance mechanisms using soil pot and hydroponic experiments. Garland chrysanthemum (Chrysanthemum coronarium L.), spinach (Spinacia oleracea L.), and lettuce (Lactuca sativa L.) were tested, and the soil As safety threshold values of the tested leafy vegetables were 91.7, 76.2, and 80.7 mg kg-1, respectively, i.e., higher than the soil environmental quality standard of China. According to growth indicators and oxidative stress markers (malondialdehyde, the ratio of reduced glutathione to oxidized glutathione, and soluble protein), the order of As tolerance was: GC > SP > LE. The high tolerance of GC was due to the low transport factor of As from the roots to the shoots; the high activity of superoxide dismutase, glutathione peroxidase, and catalase; and the high content of phytochelatin in the roots. Results of this work shed light on the use of As-contaminated soils and plant tolerance of As stress.


Assuntos
Arsênio , Poluentes do Solo , Arsênio/análise , Humanos , Alface/metabolismo , Solo , Poluentes do Solo/análise , Spinacia oleracea , Verduras/metabolismo
19.
Org Lett ; 24(10): 2045-2049, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35244405

RESUMO

Herein we report selective P-C and P-N chemistry as a new synthetic tool for constructing phosphorus (P)-chromophores with rich chemical structures. Our studies reveal that isomeric structures significantly influence the chemical structure and electronic communication of P-heteropines, which results in efficient tunability of the photophysical properties. In particular, isomeric P-chromophores with a protic N-H (indole) are also capable of participating in intramolecular H bonding, offering a new strategy to access a near-infrared chromophore.

20.
Biochem Biophys Res Commun ; 600: 156-162, 2022 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-35240510

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder defined as the presence of intrahepatic lipid deposition and steatosis as well as chronic inflammation without excessive alcohol consumption. Our previous studies found that inulin could dramatically improve lipid metabolism disorders in NAFLD murine models. In recent years, mounting evidence has approved that there are disproportionately increased bile acids (BAs) in patients with NAFLD while the hepatic bile acids signaling is suppressed. Meanwhile the primary function of bile acids is to promote the excretion of cholesterol and therefore keep the cholesterol metabolism balance. Hence, we investigate whether inulin exerts beneficial effects on lipid metabolism disorders by modulating bile acids signaling in our present study. And we found that inulin treatment significantly reversed the abnormal accumulation of bile acids in high-fat-induced NAFLD mice. Furthermore, our data confirmed that inulin supplementation attenuates NAFLD via restoring the activity of FXR accompanied by increasing hepatic bile acids de novo synthesis and further enhancing bile acids excretion in mice.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Humanos , Inulina/metabolismo , Inulina/farmacologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...