Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085619

RESUMO

Atmospheric pollution by particulate matter represents a significant health risk and needs continuous monitoring by air quality networks that provide mass concentrations for PM10 and PM2.5 (particles with diameter smaller than 10 m and 2.5 m, respectively). We present here a new approach to monitor the urban particles content, using six years of aerosols number concentration measurements for particles in the 0.2-50 m size range. These measurements are performed by the Light Optical Aerosols Counter (LOAC) instrument onboard the tethered touristic balloon "Ballon de Paris Generali", in Paris, France. Such measurements have allowed us first to detect at ground a seasonal variability in the particulate matter content, due to the origin of the particles (anthropogenic pollution, pollens), and secondly, to retrieve the mean evolution of particles concentrations with height above ground up to 150 m. Measurements were also conducted up to 300 m above ground during major pollution events. The vertical evolution of concentrations varies from one event to another, depending on the origin of the pollution and on the meteorological conditions. These measurements have shown the interest of performing particle number concentrations measurements for the air pollution monitoring in complement with regulatory mass concentrations measurement, to better evaluate the intensity of the pollution event and to better consider the effect of smallest particles, which are more dangerous for human health.

2.
Sci Rep ; 9(1): 16122, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695067

RESUMO

High Latitude Dust (HLD) contributes 5% to the global dust budget, but HLD measurements are sparse. Dust observations from Iceland provide dust aerosol distributions during the Arctic winter for the first time, profiling dust storms as well as clean air conditions. Five winter dust storms were captured during harsh conditions. Mean number concentrations during the non-dust flights were <5 particles cm-3 for the particles 0.2-100 µm in diameter and >40 particles cm-3 during dust storms. A moderate dust storm with >250 particles cm-3 (2 km altitude) was captured on 10th January 2016 as a result of sediments suspended from glacial outburst flood Skaftahlaup in 2015. Similar concentrations were reported previously in the Saharan air layer. Detected particle sizes were up to 20 µm close to the surface, up to 10 µm at 900 m altitude, up to 5 µm at 5 km altitude, and submicron at altitudes >6 km. Dust sources in the Arctic are active during the winter and produce large amounts of particulate matter dispersed over long distances and high altitudes. HLD contributes to Arctic air pollution and has the potential to influence ice nucleation in mixed-phase clouds and Arctic amplification.

3.
Appl Opt ; 49(18): 3552-9, 2010 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-20563208

RESUMO

Mineral sand is a major component of aerosols in the atmosphere. It is necessary to have a laboratory database to interpret the remote sensing measurements of light scattered by such grains. For this purpose, the PROGRA2 experiment is dedicated to the retrieval of polarization and brightness phase curves, in the visible wavelength domain, of various grains that can be found in Earth's atmosphere and in space. The measurements of the scattered light by levitating clouds of grains are conducted at two wavelengths, 632.8 and 543.5nm, with PROGRA2-VIS. Large grains (at least tens of micrometers) are studied in microgravity conditions during parabolic flights; smaller (micrometer-sized) grains are lifted by an air draught in ground-based conditions. The PROGRA2-SURF instrument allows measurements on the grains deposited on a plane surface, at the same wavelengths. New data for the scattering properties are presented for sands of various origins, including fine clay. The polarimetric phase curves for levitating grains are close to each other for all the samples (except for black sands); small discrepancies are mainly due to grains' light absorption differences. The polarization curves for levitating grains differ strongly from those of deposited grains (dry or wet). In particular, these curves can be used to interpret remote sensing measurements to distinguish between grains at ground and grains transported by winds.

4.
J Opt Soc Am A Opt Image Sci Vis ; 25(2): 379-93, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18246172

RESUMO

Scintillation effects are not negligible in the stratosphere. We present a model based on a 3D model of anisotropic and isotropic refractive index fluctuations spectra that predicts scintillation rates within the so-called small perturbation approximation. Atmospheric observations of stellar scintillation made from the AMON-RA (AMON, Absorption par les Minoritaires Ozone et NO(x); RA, rapid) balloon-borne spectrometer allows us to remotely probe wave-turbulence characteristics in the stratosphere. Data reduction from these observations brings out values of the inner scale of the anisotropic spectrum. We find metric values of the inner scale that are compatible with space-based measurements. We find a major contribution of the anisotropic spectrum relative to the isotropic contribution. When the sight line plunges into the atmosphere, strong scintillation occurs as well as coupled chromatic refraction effects.

5.
Appl Opt ; 45(32): 8331-7, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-17068578

RESUMO

Measuring linear polarization of light scattered by a cloud of particles can help retrieve their physical properties. We present an extensive study of polarimetric measurements of sand grains that can be found on the surface and in the atmosphere of the Earth. Different techniques of measurements are compared using the Laboratoire de Météorologie Physique nephelometer on the ground and the Propriétés Optiques des Grains Astronomiques et Atmosphériques on the ground and in microgravity during parabolic flights. The techniques used on the ground bias the measurements. When the grains are lifted by an air draft, differentiation is produced in the size distribution and the nature of the floating particles. When the grains are carried along with the airflow, some grains become oriented along the flow direction at air speeds greater than a few meters per second, producing abnormal negative polarization. On the other hand, measurements conducted under microgravity permit the retrieval of the representative optical properties of the lifted sand grains with sizes greater than tens of micrometers.

6.
Appl Opt ; 44(19): 4086-95, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16004056

RESUMO

The aerosol extinction measurements in the ultraviolet and visible wavelengths by the balloonborne spectrometer Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NOx (SALOMON) show that aerosols are present in the middle stratosphere, above 25-km altitude. These observations are confirmed by the extinction measurements performed by a solar occultation radiometer. The balloonborne Laboratoire de Météorologie Dynamique (LMD) counter instrument also confirms the presence of aerosol around 30-km altitude, with an unrealistic excess of micronic particles assuming that only liquid sulfate aerosols are present. An unexpected spectral structure around 640-nm observed by SALOMON is also detectable in extinction measurements by the satellite instrument Stratospheric Aerosols and Gas Experiment III. This set of measurements could indicate that solid aerosols were detected at these altitude ranges. The amount of soot detected up to now in the lower stratosphere is too low to explain these measurements. Thus, the presence of interplanetary dust grains and micrometeorites may need to be invoked. Moreover, it seems that these grains fill the stratosphere in stratified layers.

7.
Appl Opt ; 44(4): 591-6, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15726957

RESUMO

Reference scattering curves for polarization and intensity produced by aggregates and agglomerates of ethylene and kerosene soot are obtained for scattering angles in the 10-170 degrees range. The polarization measurements were obtained with the Propriétés Optiques des Grains Astronomiques et Atmosphériques instrument for particles that levitate in microgravity during parabolic flights and on the ground by an air draught technique. The intensity measurements were obtained also on the ground with a Laboratoire de Metéorologie Physique nephelometer. The maximum polarization is of the order of 80% at a scattering angle of 80 degrees at lambda = 632.8 nm and approximately 75% at an angle of 90 degrees at lambda = 543.5 nm. The polarization increases by approximately 10% when the size of the agglomerate increases from 10 microm to a few hundred micrometers. The intensity curve exhibits a strong increase at small scattering angles. These reference curves will be used in the near future for the detection of stratospheric soot by remote-sensing measurement techniques.

8.
Appl Opt ; 41(4): 609-18, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11993904

RESUMO

A new version of the PROGRA2 instrument, dedicated to measuring the polarization phase function of various kinds of solid particles, allows obtaining maps of polarization and brightness with a spatial resolution of a few tens of micrometers. The measurements are conducted in microgravity during parabolic flights to ensure random distribution and orientation of the particles. The results of the first two sessions are presented. Comparison between measurements and Mie theory modeling for glass spheres shows that the instrument works well and that accurate results can be obtained even at small phase angles. Results for irregularly shaped particles are also presented.

9.
Appl Opt ; 41(36): 7522-39, 2002 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-12510916

RESUMO

Aerosol extinction coefficients have been derived in the 375-700-nm spectral domain from measurement in the stratosphere since 1992, at night, at mid- and high latitudes from 15 to 40 km, by two balloonborne spectrometers, Absorption par les Minoritaires Ozone et NO(chi) (AMON) and Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NO(chi) (SALOMON). Log-normal size distributions associated with the Mie-computed extinction spectra that best fit the measurements permit calculation of integrated properties of the distributions. Although measured extinction spectra that correspond to background aerosols can be reproduced by the Mie scattering model by use of monomodal log-normal size distributions, each flight reveals some large discrepancies between measurement and theory at several altitudes. The agreement between measured and Mie-calculated extinction spectra is significantly improved by use of bimodal log-normal distributions. Nevertheless, neither monomodal nor bimodal distributions permit correct reproduction of some of the measured extinction shapes, especially for the 26 February 1997 AMON flight, which exhibited spectral behavior attributed to particles from a polar stratospheric cloud event.

10.
Appl Opt ; 41(36): 7540-9, 2002 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-12510917

RESUMO

The physical properties of stratospheric aerosols can be retrieved from optical measurements involving extinction, radiance, polarization, and counting. We present here the results of measurements from the balloonborne instruments AMON, SALOMON, and RADIBAL, and from the French Laboratoire de Météorologie Dynamique and the University of Wyoming balloonborne particle counters. A cross comparison of the measurements was made for observations of background aerosols conducted during the polar winters of February 1997 and January-February 2000 for various altitudes from 13 to 19 km. On the one band, the effective radius and the total amount of background aerosols derived from the various sets of data are similar and are in agreement with pre-Pinatubo values. On the other hand, strong discrepancies occur in the shapes of the bimodal size distributions obtained from analysis of the raw measurement of the various instruments. It seems then that the log-normal assumption cannot fully reproduce the size distribution of background aerosols. The effect ofthe presence of particular aerosols on the measurements is discussed, and a new strategy for observations is proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA