RESUMO
N-(1,3-Dimethylbutyl)-N'-phenyl-1,4-benzenediamine (6PPD) is a common additive in tires. 6PPD protects rubber from oxidative damage by ozone. Leaching of 6PPD in the environment leads to the formation of harmful byproducts such as 6PPD quinone. In this work we provide the fundamental basis for the detection of 6PPD by electrochemical techniques. We use cyclic voltammetry to study the adsorption of 6PPD on glassy carbon. We show that adsorbed 6PPD can be reversibly oxidized and reduced without disturbing the adsorption process. This result enables repeated electrochemical titrations. We determine, in neutral condition at 22 °C, an adsorption constant of Kads = 1.2 ± 0.5 µM-1 and kinetics of adsorption kads∈[0.74-5.60] × 104 L mol-1 s-1. Based on this knowledge we demonstrate the lowest concentration of 6PPD ever detected electrochemically, 10 nM. We also identify current challenges for electrochemical sensing of 6PPD. Multiple layers are formed at concentrations above 4.6 µM and the slow kinetics of adsorption requires long (hour) measurement time to reach maximum sensitivity.
RESUMO
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
RESUMO
Droplet evaporation and dissolution phenomena are pervasive in both natural and artificial systems, playing crucial roles in various applications. Understanding the intricate processes involved in the evaporation and dissolution of sessile droplets is of paramount importance for applications such as inkjet printing, surface coating, and nanoparticle deposition, etc. In this study, we present a demonstration of electrochemical investigation of the dissolution behaviour in sub-nL droplets down to sub-pL volume. Droplets on an electrode have been studied for decades in the field of electrochemistry to understand the phase transfer of ions at the oil-water interface, accelerated reaction rates in microdroplets, etc. However, the impact of microdroplet dissolution on the redox activity of confined molecules within the droplet has not been explored previously. As a proof-of-principle, we examine the dissolution kinetics of 1,2-dichloroethane droplets (DCE) spiked with 155 µM decamethylferrocene within an aqueous phase on an ultramicroelectrode (r = 6.3 µm). The aqueous phase serves as an infinite sink, enabling the dissolution of DCE droplets while also facilitating convenient electrical contact with the reference/counter electrode (Ag/AgCl 1 M KCl). Through comprehensive voltammetric analysis, we unravel the impact of droplet dissolution on electrochemical response as the droplet reaches minuscule volumes. We validate our experimental findings by finite element modelling, which shows deviations from the experimental results as the droplet accesses negligible volumes, suggesting the presence of complex dissolution modes.
RESUMO
Analytical techniques operating at the nanoscale introduce confinement as a tool at our disposal. This review delves into the phenomenon of accelerated reactivity within micro- and nanodroplets. A decade of accelerated reactivity observations was succeeded by several years of fundamental studies aimed at mechanistic enlightenment. Herein, we provide a brief historical context for rate enhancement in and around micro- and nanodroplets and summarize the mechanisms that have been proposed to contribute to such extraordinary reactivity. We highlight recent electrochemical reports that make use of restricted mass transfer to enhance electrochemical reactions and/or quantitatively measure reaction rates within droplet-confined electrochemical cells. A comprehensive approach to nanodroplet reactivity is paramount to understanding how nature takes advantage of these systems to provide life on Earth and, in turn, how to harness the full potential of such systems.
RESUMO
Droplet evaporation has previously been used as a concentration enrichment strategy; however, the measurement technique of choice requires quantification in rather large volumes. Electrochemistry has recently emerged as a method to robustly probe volumes even down to the attoliter (10-18 L) level. We present a concentration enrichment strategy based on the dissolution of a microdroplet placed on the surface of a Au ultramicroelectrode (radius â¼ 6.25 µm). By precisely positioning a 1,2-dichloroethane microdroplet onto the ultramicroelectrode with a microinjector, we are able to track the droplet's behavior optically and electrochemically. Because the droplet spontaneously dissolves over time, given the relative solubility of 1,2-dichloroethane in the water continuous phase, the change in volume with time enriches the concentration of the redox probe (Cp2*(Fe)II) in the droplet. We demonstrate robust electrochemical detection down to sub-nM (800 pM) concentrations of Cp2*(Fe)II. For this droplet, 800 pM constitutes only about 106 molecules. We extend the strategy in a single-blind study to determine unknown concentrations, emphasizing the promise of the new methodology. These results take voltammetric quantification easily to the sub-µM regime.
RESUMO
Diffusion is a fundamental process in various domains, such as pollution control, drug delivery, and isotope separation. Accurately measuring the diffusion coefficients (D) of one liquid into another often encounters challenges stemming from intermolecular interactions, precise observations at the liquid interface, convection, etc. Here, we present an innovative electrochemical methodology for determining the diffusion coefficient of a liquid into another liquid. The method involves precisely tracking the lifetime of a nonaqueous droplet. An organic droplet is placed on an ultramicroelectrode surrounded by an aqueous solution of potassium hexacyanoferrate(II/III). The droplet initially blocks the reduction or oxidation of the redox species. As the droplet dissolves, giving access to the conductive microelectrode surface, a continuously increasing current is observed in voltammetry and the amperometric i-t response. The electrochemical response thus directly reports on the flux of redox species on the electrode surface, allowing us to precisely determine the lifetime of the droplet. D values are directly determined through a combination of electrochemical analysis and the principles of droplet dissolution. We demonstrate the quantification of 1,2-dichloroethane and nitrobenzene into water, yielding diffusion coefficients of (11.3 ± 1.2) × 10-6 cm2/s and (5.2 ± 1.1) × 10-6 cm2/s, respectively. This work establishes a reliable electrochemical approach for quantifying diffusion coefficients based on droplet lifetime analysis.
RESUMO
Studying chemical reactions in very small (attoliter to picoliter) volumes is important in understanding how chemistry proceeds at all relevant scales. Stochastic electrochemistry is a powerful tool to study the dynamics of single nanodroplets, one at a time. Perhaps the most conceptually simple experiment is that of the current blockade, where the collision of an insulating particle is observed electrochemically as a stepwise decrease in current. Here, we demonstrate that nanodroplet collisions on microelectrodes are not as simple as water droplets adsorbing to the electrode to block current and that the environment immediately around the microelectrode (glass insulator) plays a pivotal role in the electrochemical collision response. We use correlated opto-electrochemical measurements to understand a variety of electrochemical responses when water nanodroplets collide with a microelectrode during the heterogeneous oxidation of decamethylferrocene in oil. The amperometric current reports not only on current blockades but also on nanodroplet coalescence events and preferential wetting to the glass around the microelectrode. Treating the glass with dichlorodimethylsilane creates a hydrophobic environment around the working electrode, and the simple current blockade response expected from the absorption of insolating nanoparticles is observed. These results highlight the importance of the environment around the working electrode for nanodroplet collision studies.
RESUMO
CMOS-based nanocapacitor arrays allow local probing of the impedance of an electrolyte in real time and with sub-micron spatial resolution. Here we report on the physico-chemical characterization of individual microdroplets of oil in a continuous water phase using this new tool. We monitor the sedimentation and wetting dynamics of individual droplets, estimate their volume and infer their composition based on their dielectric constant. From measurements before and after wetting of the surface, we also attempt to estimate the contact angle of individual micron-sized droplets. These measurements illustrate the capabilities and versatility of nanocapacitor array technology.
Assuntos
Água , Água/químicaRESUMO
Contactless interactions of micro/nano-particles near electrochemically or chemically active interfaces are ubiquitous in chemistry and biochemistry. Forces arising from a convective field, an electric field or chemical gradients act on different scales ranging from few microns down to few nanometers making their study difficult. Here, we correlated optical microscopy and electrochemical measurements to track at the millisecond timescale the dynamics of individual two-dimensional particles, graphene nanoplatelets (GNPs), when approaching an electrified Pt micro-interface. Our original approach takes advantage of the bipolar feedback current recorded when a conducting particle approaches an electrified surface without electrical contact and numerical simulations to access the velocity of individual GNPs. We evidenced a strong deceleration of GNPs from few tens of µm s-1 down to few µm s-1 within the last µm above the surface. This observation reveals the existence of strongly non-uniform forces between tens of and a thousand nanometers from the surface.
RESUMO
Single-entity electrochemistry has emerged as a powerful tool to study the adsorption behavior of single nanoscale entities one-at-a-time on an ultramicroelectrode surface. Classical single-entity collision studies have focused on the behavior of spherical nanoparticles or entities where the orientation of the colliding entity does not impact the electrochemical response. Here, we report a detailed study of the collision of asymmetric single graphene nanoplatelets onto ultramicroelectrodes. The collision of conductive graphene nanoplatelets on biased ultramicroelectrode surfaces can be observed in an amperometric i-t trace, revealing a variety of current transients (both positive and negative steps). To elucidate the dynamics of nanoplatelet adsorption processes and probe response heterogeneity, we correlated the collision events with optical microscopy. We show that positive steps are due to nanoplatelets coming into contact with the ultramicroelectrode, making an electrical connection, and adsorbing partly on the glass surrounding the ultramicroelectrode. Negative steps occur when nanoplatelets adsorb onto the glass without an electrical connection, effectively blocking flux of ferrocenemethanol to the ultramicroelectrode surface. These measurements allow rigorous quantification of current transients and detailed insights into the adsorption dynamics of asymmetric objects at the nanoscale.
RESUMO
Nanoparticles interact with a variety of interfaces, from cell walls for medicinal applications to conductive interfaces for energy storage and conversion applications. Unfortunately, quantifying dynamic changes of nanoparticles near interfaces is difficult. While optical techniques exist to study nanoparticle dynamics, motions smaller than the diffraction limit are difficult to quantify. Single-entity electrochemistry has high sensitivity, but the technique suffers from ambiguity in the entity's size, morphology, and collision location. Here, we combine optical microscopy, single-entity electrochemistry, and numerical simulations to elucidate the dynamic motion of graphene nanoplatelets at a gold ultramicroelectrode (radius â¼5 µm). The approach of conductive graphene nanoplatelets, suspended in 10 µM NaOH, to an ultramicroelectrode surface was tracked optically during the continuous oxidation of ferrocenemethanol. Optical microscopy confirmed the nanoplatelet size, morphology, and collision location on the ultramicroelectrode. Nanoplatelets collided on the ultramicroelectrode at an angle, θ, enhancing the electroactive area, resulting in a sharp increase in current. After the collision, the nanoplatelets reoriented to lay flat on the electrode surface, which manifested as a return to the baseline current in the amperometric current-time response. Through correlated finite element simulations, we extracted single nanoplatelet angular velocities on the order of 0.5-2°/ms. These results are a necessary step forward in understanding nanoparticle dynamics at the nanoscale.
RESUMO
Faradaic reactions at low supporting electrolyte concentrations induce convection via electroosmotic flows. Here we combine finite-element simulations and electrochemical measurements on microparticles at ultramicroelectrodes to explore this effect. We show that convection becomes the dominant form of mass transport for experiments at low salt concentrations, violating the common assumption that convection can be neglected.
RESUMO
We propose an analytical method based on electrochemical collisions to detect individual graphene oxide (GO) sheets in an aqueous suspension. The collision rate is found to exhibit a complex dependence on redox mediator and supporting electrolyte concentrations. The analysis of multiple collision events in conjunction with numerical simulations allows quantitative information to be extracted, such as the molar concentration of GO sheets in suspension and an estimate of the size of individual sheets. We also evidence by numerical simulation the existence of edge effects on a 2D blocking object.
RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Creative approaches to the design of catalytic nanomaterials are necessary in achieving environmentally sustainable energy sources. Integrating dissimilar metals into a single nanoparticle (NP) offers a unique avenue for customizing catalytic activity and maximizing surface area. Alloys containing five or more equimolar components with a disordered, amorphous microstructure, referred to as High-Entropy Metallic Glasses (HEMGs), provide tunable catalytic performance based on the individual properties of incorporated metals. Here, we present a generalized strategy to electrosynthesize HEMG-NPs with up to eight equimolar components by confining multiple metal salt precursors to water nanodroplets emulsified in dichloroethane. Upon collision with an electrode, alloy NPs are electrodeposited into a disordered microstructure, where dissimilar metal atoms are proximally arranged. We also demonstrate precise control over metal stoichiometry by tuning the concentration of metal salt dissolved in the nanodroplet. The application of HEMG-NPs to energy conversion is highlighted with electrocatalytic water splitting on CoFeLaNiPt HEMG-NPs.
RESUMO
One of the greatest limitations in electrochemical collision/nanoimpact methods is the inability to quantify the size of colliding species due to the uneven current distribution on a disk ultramicroelectrode UME (so-called edge effect). This phenomenon arises since radial diffusion is greater at the edge than the center of the active electrode surface. One method of solving this problem is fabrication of a hemispherical UME. We describe the fabrication of a hemispherical Hg UME on a disk UME by a solution-based electrochemical method, chronocoulometry. The use of hemispherical Hg UME to detect collisions of individual amine-functionalized polystyrene beads removes the "edge effect" and enables simultaneous measurements of the concentration and the size distribution of colloids in suspension. Using finite element simulations, we deduce a quantitative relation between the distribution of current step size and the size distribution of the bead. The frequency of collision measured for a given size of bead is then converted into a concentration (in mol/L) by a quantification of the relative contributions of migration and diffusion for each size of bead. Under our experimental conditions (low concentration of supporting electrolyte), migration dominates the flux of bead. The average size of polystyrene beads of 0.5 and 1 µm radius obtained by electrochemistry and scanning electron microscopy (SEM) differs by only -8% and -9%, respectively. The total concentration of polystyrene beads of 0.5 and 1 µm radius obtained by electrochemistry is found in close agreement (<10% of error) with their nominal concentrations (25 and 100 fM).
RESUMO
The electrochemical oxidation of hydrazine was investigated in strongly and weakly pH buffered solutions to reveal the role of buffer capacity in proton-electron transfer redox reactions. In sufficiently buffered solutions, a single voltammetric feature was observed. However, increasing the hydrazine concentration (or, equivalently, moving to an insufficiently buffered solution) gave rise to a second voltammetric feature. These results are rationalised with a conceptually simple model and finite element simulations. We demonstrate that the new voltammetric feature is caused by a large change in the pH at the electrode surface as the reaction proceeds. Importantly, we show that the occurrence of additional voltammetric features are general for proton-electron transfer reactions in insufficiently buffered solutions, and should not be confused with changes in the reaction mechanism.
RESUMO
We have developed a measurement platform for performing high-frequency AC detection at nanoelectrodes. The system consists of 65â¯536 electrodes (diameter 180 nm) arranged in a sub-micrometer rectangular array. The electrodes are actuated at frequencies up to 50 MHz, and the resulting AC current response at each separately addressable electrode is measured in real time. These capabilities are made possible by fabricating the electrodes on a complementary metal-oxide-semiconductor (CMOS) chip together with the associated control and readout electronics, thus minimizing parasitic capacitance and maximizing the signal-to-noise ratio. This combination of features offers several advantages for a broad range of experiments. First, in contrast to alternative CMOS-based electrical systems based on field-effect detection, high-frequency operation is sensitive beyond the electrical double layer and can probe entities at a range of micrometers in electrolytes with high ionic strength such as water at physiological salt concentrations. Far from being limited to single- or few-channel recordings like conventional electrochemical impedance spectroscopy, the massively parallel design of the array permits electrically imaging micrometer-scale entities with each electrode serving as a separate pixel. This allows observation of complex kinetics in heterogeneous environments, for example, the motion of living cells on the surface of the array. This imaging aspect is further strengthened by the ability to distinguish between analyte species based on the sign and magnitude of their AC response. Finally, we show here that sensitivity down to the attofarad level combined with the small electrode size permits detection of individual 28 nm diameter particles as they land on the sensor surface. Interestingly, using finite-element methods, it is also possible to calculate accurately the full three-dimensional electric field and current distributions during operation at the level of the Poisson-Nernst-Planck formalism. This makes it possible to validate the interpretation of measurements and to optimize the design of future experiments. Indeed, the complex frequency and spatial dependence of the data suggests that experiments to date have only scratched the surface of the method's capabilities. Future iterations of the hardware will take advantage of the higher frequencies, higher electrode packing densities and smaller electrode sizes made available by continuing advances in CMOS manufacturing. Combined with targeted immobilization of targets at the electrodes, we anticipate that it will soon be possible to realize complex biosensors based on spatial- and time-resolved nanoscale impedance detection.
RESUMO
We report the crucial components required to perform scanning electrochemical microscopy (SECM) with nanometer-scale resolution. The construction and modification of the software and hardware instrumentation for nanoscale SECM are explicitly explained including (1) the LabVIEW code that synchronizes the SECM tip movement with the electrochemical response, (2) the construction of an isothermal chamber to stabilize the nanometer scale gap between the tip and substrate, (3) the modification of a commercial bipotentiostat to avoid electrochemical tip damage during SECM experiments, and (4) the construction of an SECM stage to avoid artifacts in SECM images. These findings enabled us to successfully build a nanoscale SECM, which can be utilized to map the electrocatalytic activity of individual nanoparticles in a typical ensemble sample and study the structure/reactivity relationship of single nanostructures.