RESUMO
Molecular photoswitches provide interesting tools to reversibly control various biological functions with light. Thanks to its small size and easy introduction into the biomolecules, azobenzene derivatives have been widely employed in the field of photopharmacology. All visible-light switchable azobenzenes with controllable thermostability are highly demanded. Based on the reported tetra-o-chloroazobenzenes, we synthesized push-pull systems, by introducing dialkyl amine and nitro groups as strong electron-donating and electron-withdrawing groups on the para-positions, and then transformed to push-push systems by a simple reduction step. The developed push-pull and push-push tetra-o-chloroazobenzene derivatives displayed excellent photoswitching properties, as previously reported. The half-life of the Z-isomers can be tuned from milliseconds for the push-pull system to several hours for the push-push system. The n-π* and π-π* transitions have better resolution in the push-push molecules, and excitation at different wavelengths can tune the E/Z ratio at the photostationary state. For one push-pull molecule, structure and absorption spectra obtained from theoretical calculations are compared with experimental data, along with data on the push-push counterpart.
RESUMO
Our study presents a novel enantioselective route for the synthesis of 1,2,3,4-tetrahydroquinolines via a chiral phosphoric acid-catalyzed three-component Povarov reaction, employing phenolic dienes as dienophiles. This approach produces a diverse array of 2,3,4-trisubstituted tetrahydroquinolines, each featuring a styryl group at position 4, in high yields with excellent regio-, diastereo-, and enantioselectivities (>95:5 dr and up to >99% ee).
RESUMO
This article reports the synthesis, along with structural and photophysical characterization of 2-(2'-hydroxyphenyl)benzazole derivatives functionalized with various azaheterocycles (pyridine, pyrimidine, terpyridine). These compounds show dual-state emission properties, that is intense fluorescence both in solution and in the solid-state with a range of fluorescent color going from blue to orange. Moreover, the nature of their excited state can be tuned by the presence of external stimuli such as protons or metal cations. In the absence of stimuli, these dyes show emission stemming from anionic species obtained after deprotonation (D* transition), whereas upon protonation or metal chelation, ESIPT process occurs leading to a stabilized and highly emissive K* transition. With the help of extensive ab initio calculations, we confirm that external stimuli can switch the nature of the transitions, making this series of dyes attractive candidates for the development of stimuli-responsive fluorescent ratiometric probes.
RESUMO
We disclose the synthesis of 3-arylquinoxalin-2-ones from o-phenylenediamines and readily available arylacetates. The method harnesses the selective oxidative property of elemental sulfur in the presence of amine base catalyst and DMSO. The reactions are operationally simple and tolerate a wide range of functional groups.
RESUMO
We developed a transition metal-free methodology for the construction of pyrazoloquinazolinone derivatives. The strategy involves a one-pot reaction wherein the N-tosylhydrazone and its corresponding diazo derivative are generated in situ, followed by an intramolecular 1,3-dipolar cycloaddition-ring expansion to provide the pyrazolo-[1,5-c]quinazolinone motif. This approach enables straightforward access to a diverse range of highly functionalized N-heterocyclic compounds in good yields (up to 92%).
RESUMO
Starting with chiral vinyl sulfoxides and allenyl ketones or allenoates, a triflic acid-catalyzed asymmetric [3,3]-sigmatropic rearrangement of sulfoniums is reported to have a direct access to highly functionalized C4-chiral cyclopentenones (19 examples, up to 85% yield and >95% enantiomeric excesses). In addition to the use of these chiral compounds as key building blocks in organic synthesis, the antiproliferative activities of sulfoxide substrates and the corresponding cyclopentenones were evaluated, and promising cytotoxicity against the HL-60 human tumor cell line was found.
RESUMO
Dibenzotriazonine represent a new class of nine-membered cyclic azobenzenes with a nitrogen atom embedded in the bridging chain. To enable future applications of this photoactive backbone, we propose in this study the synthesis of mono- and dihalogenated triazonines, that allow the late-stage introduction of different functionalized aryl groups and heteroatoms (N, O, and P) via palladium-catalyzed reactions. Indeed, different diphenylphosphoryl-triazonines were synthesized with functional groups such as aniline or phenol. Bis(diphenylphosphoryl)phenyl mono- and bis-carbamate-triazonines were also isolated in good yields.
RESUMO
The radical Truce-Smiles rearrangement is a straightforward strategy for incorporating aryl groups into organic molecules for which asymmetric processes remains rare. By employing a readily available and non-expensive chiral auxiliary, we developed a highly efficient asymmetric photocatalytic acyl and alkyl radical Truce-Smiles rearrangement of α-substituted acrylamides using tetrabutylammonium decatungstate (TBADT) as a hydrogen atom-transfer photocatalyst, along with aldehydes or C-H containing precursors. The rearranged products exhibited excellent diastereoselectivities (7 : 1 to >98 : 2â d.r.) and chiral auxiliary was easily removed. Mechanistic studies allowed understanding the transformation in which density functional theory (DFT) calculations provided insights into the stereochemistry-determining step.
RESUMO
As a result of screening a panel of marine organisms to identify lead molecules for the stimulation of endochondral bone formation, the calcareous sponge Pericharax heteroraphis was identified to exhibit significant activity during endochondral differentiation. On further molecular networking analysis, dereplication and chemical fractionation yielded the known clathridine A-related metabolites 3-6 and the homodimeric complex (clathridine A)2 Zn2+ (9), together with the new unstable heterodimeric complex (clathridine A-clathridimine)Zn2+ (10). With the presence of the zinc complexes annotated through the LC-MS analysis of the crude extract changing due to the instability of some metabolites and complexes constituting the mixture, we combined the isolation of the predicted molecules with their synthesis in order to confirm their structure and to understand their reactivity. Interestingly, we also found a large quantity of the contaminant benzotriazoles BTZ (7) and its semi-dimer (BTZ)2CH2 (8), which are known to form complexes with transition metals and are used for preventing corrosion in water. All isolated 2-aminoimidazole derivatives and complexes were synthesized not only for structural confirmation and chemical understanding but to further study their bioactivity during endochondral differentiation, particularly the positively screened imidazolone derivatives. Compounds leucettamine B, clathridine A and clathridimine were found to increase type X collagen transcription and stimulate endochondral ossification in the ATDC5 micromass model.
Assuntos
Diferenciação Celular , Osteogênese , Poríferos , Animais , Poríferos/química , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Organismos Aquáticos , Zinco/químicaRESUMO
Excited-State Intramolecular Proton Transfer (ESIPT) emission is associated with intense single or multiple fluorescence in the solid-state, along with enhanced photostability and sensitivity to the close environment. As a result, ESIPT probes are attractive candidates for ratiometric sensing of a variety of substrates. A new family of ESIPT fluorophores is described herein, inspired by the well-known 2-(2'hydroxyphenyl)benzazole (HBX) organic scaffold. The connection of 3,3'-dimethylindole (or 3H-indole) derivatives with phenol rings triggers the formation of novel 2-(2'-hydroxyphenyl)-3,3'-dimethylindole (HDMI) fluorophores, capable of stimuli-responsive ESIPT emission. This brand new family of dyes displays redshifted emission, as compared to HBX, along with an unprecedented acid/base-mediated stabilization of different rotamers, owing to supramolecular interactions with methyl groups. These compounds are therefore highly sensitive to external stimuli, such as the presence of acid or base, where protonated and deprotonated species have specific optical signatures. Moreover, a new pyridine-functionalized HDMI dye displays acid-sensitive AIE properties. The photophysical properties of all compounds have also been studied using ab initio calculations to support experiments in deciphering the nature of the various radiative transitions observed and the related excited rotameric species.