Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31761294

RESUMO

The development of hindlimbs in tetrapod species relies specifically on the transcription factor TBX4. In humans, heterozygous loss-of-function TBX4 mutations cause dominant small patella syndrome (SPS) due to haploinsufficiency. Here, we characterize a striking clinical entity in four fetuses with complete posterior amelia with pelvis and pulmonary hypoplasia (PAPPA). Through exome sequencing, we find that PAPPA syndrome is caused by homozygous TBX4 inactivating mutations during embryogenesis in humans. In two consanguineous couples, we uncover distinct germline TBX4 coding mutations, p.Tyr113∗ and p.Tyr127Asn, that segregated with SPS in heterozygous parents and with posterior amelia with pelvis and pulmonary hypoplasia syndrome (PAPPAS) in one available homozygous fetus. A complete absence of TBX4 transcripts in this proband with biallelic p.Tyr113∗ stop-gain mutations revealed nonsense-mediated decay of the endogenous mRNA. CRISPR/Cas9-mediated TBX4 deletion in Xenopus embryos confirmed its restricted role during leg development. We conclude that SPS and PAPPAS are allelic diseases of TBX4 deficiency and that TBX4 is an essential transcription factor for organogenesis of the lungs, pelvis, and hindlimbs in humans.

2.
J Hepatol ; 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31726117

RESUMO

BACKGROUND AIM: Under the regulation of various oncogenic pathways, cancer cells undergo adaptive metabolic programming to maintain specific metabolic states that support their uncontrolled proliferation. As it has been difficult to directly and effectively inhibit oncogenic signaling cascades with pharmaceutical compounds, focusing on the downstream metabolic pathways that enable indefinite growth may provide therapeutic opportunities. Thus, we sought to characterize metabolic changes in hepatocellular carcinoma (HCC) development and identify metabolic targets required for tumorigenesis. METHODS: We compared gene expression profiles of Morris Hepatoma (MH3924a) and DEN (Diethylnitrosamine)-induced HCC models to those of liver tissues from normal and rapidly regenerating liver models, and performed gain- and loss-of-function studies of the identified gene targets for their roles in cancer cell proliferation in vitro and in vivo. RESULTS: The proline biosynthetic PYCR1 (Pyrroline-5-Carboxylate Reductase 1) was identified as a top up-regulated gene in the HCC models. Knockdown (KD) of PYCR1 potently reduced cell proliferation of multiple HCC cell lines in vitro and tumor growth in vivo. Conversely, overexpression of PYCR1 enhanced the proliferation of the HCC cell lines. Importantly, PYCR1 expression was not elevated in the regenerating liver, and KD or overexpression of PYCR1 had no effect on proliferation of non-cancerous cells. Besides PYCR1, we found that additional proline biosynthetic enzymes, such as ALDH18A1, were upregulated in HCC models and also regulated HCC cell proliferation. Clinical data demonstrated that PYCR1 expression was increased in HCC, correlated with tumor grade, and was an independent predictor of clinical outcome. CONCLUSION: Enhanced expression of proline biosynthetic enzymes promotes HCC cell proliferation. Inhibition of PYCR1 or ALDH18A1 may be a novel therapeutic strategy to target HCC.

3.
Curr Opin Genet Dev ; 56: iii-iv, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31590753
4.
Proc Natl Acad Sci U S A ; 116(38): 19055-19063, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31484767

RESUMO

Juvenile-onset recurrent respiratory papillomatosis (JRRP) is a rare and debilitating childhood disease that presents with recurrent growth of papillomas in the upper airway. Two common human papillomaviruses (HPVs), HPV-6 and -11, are implicated in most cases, but it is still not understood why only a small proportion of children develop JRRP following exposure to these common viruses. We report 2 siblings with a syndromic form of JRRP associated with mild dermatologic abnormalities. Whole-exome sequencing of the patients revealed a private homozygous mutation in NLRP1, encoding Nucleotide-Binding Domain Leucine-Rich Repeat Family Pyrin Domain-Containing 1. We find the NLRP1 mutant allele to be gain of function (GOF) for inflammasome activation, as demonstrated by the induction of inflammasome complex oligomerization and IL-1ß secretion in an overexpression system. Moreover, patient-derived keratinocytes secrete elevated levels of IL-1ß at baseline. Finally, both patients displayed elevated levels of inflammasome-induced cytokines in the serum. Six NLRP1 GOF mutations have previously been described to underlie 3 allelic Mendelian diseases with differing phenotypes and modes of inheritance. Our results demonstrate that an autosomal recessive, syndromic form of JRRP can be associated with an NLRP1 GOF mutation.

5.
Stem Cell Res ; 40: 101533, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31450191

RESUMO

Rett syndrome (RTT) is a childhood neurodevelopmental disorder caused by mutations in MECP2. To study the molecular mechanisms underlying RTT, four sublines of H1 hESCs were generated, carrying a hemizygous knockout or mutant allele of MECP2. Exons 3 and 4 of MECP2 were targeted using the CRISPR/Cas9 nuclease system.

6.
Nucleic Acids Res ; 47(6): 2822-2839, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30698748

RESUMO

The DNA methylation epigenetic signature is a key determinant during development. Rules governing its establishment and maintenance remain elusive especially at repetitive sequences, which account for the majority of methylated CGs. DNA methylation is altered in a number of diseases including those linked to mutations in factors that modify chromatin. Among them, SMCHD1 (Structural Maintenance of Chromosomes Hinge Domain Containing 1) has been of major interest following identification of germline mutations in Facio-Scapulo-Humeral Dystrophy (FSHD) and in an unrelated developmental disorder, Bosma Arhinia Microphthalmia Syndrome (BAMS). By investigating why germline SMCHD1 mutations lead to these two different diseases, we uncovered a role for this factor in de novo methylation at the pluripotent stage. SMCHD1 is required for the dynamic methylation of the D4Z4 macrosatellite upon reprogramming but seems dispensable for methylation maintenance. We find that FSHD and BAMS patient's cells carrying SMCHD1 mutations are both permissive for DUX4 expression, a transcription factor whose regulation has been proposed as the main trigger for FSHD. These findings open new questions as to what is the true aetiology for FSHD, the epigenetic events associated with the disease thus calling the current model into question and opening new perspectives for understanding repetitive DNA sequences regulation.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Metilação de DNA , Proteínas de Homeodomínio/genética , Repetições de Microssatélites/genética , Células Cultivadas , Reprogramação Celular/genética , Atresia das Cóanas/genética , Atresia das Cóanas/metabolismo , Metilação de DNA/genética , Epigênese Genética/genética , Regulação da Expressão Gênica , Células HCT116 , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Microftalmia/genética , Microftalmia/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Nariz/anormalidades
7.
Nat Commun ; 9(1): 4993, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478312

RESUMO

Signals arising from bacterial infections are detected by pathogen recognition receptors (PRRs) and are transduced by specialized adapter proteins in mammalian cells. The Receptor-interacting-serine/threonine-protein kinase 2 (RIPK2 or RIP2) is such an adapter protein that is critical for signal propagation of the Nucleotide-binding-oligomerization-domain-containing proteins 1/2 (NOD1 and NOD2). Dysregulation of this signaling pathway leads to defects in bacterial detection and in some cases autoimmune diseases. Here, we show that the Caspase-activation-and-recruitment-domain (CARD) of RIP2 (RIP2-CARD) forms oligomeric structures upon stimulation by either NOD1-CARD or NOD2-2CARD. We reconstitute this complex, termed the RIPosome in vitro and solve the cryo-EM filament structure of the active RIP2-CARD complex at 4.1 Å resolution. The structure suggests potential mechanisms by which CARD domains from NOD1 and NOD2 initiate the oligomerization process of RIP2-CARD. Together with structure guided mutagenesis experiments at the CARD-CARD interfaces, we demonstrate molecular mechanisms how RIP2 is activated and self-propagating such signal.

8.
J Biol Chem ; 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291141

RESUMO

The inflammasome is a critical molecular complex that activates IL-1 driven inflammation in response to pathogen- and danger-associated signals. Germline mutations in the inflammasome sensor, NLRP1 cause Mendelian systemic autoimmunity and skin cancer susceptibility, but its endogenous regulation remains less understood. Here we use a proteomics screen to uncover dipeptidyl dipeptidase, DPP9 as a novel interacting partner with human NLRP1 and a related inflammasome regulator, CARD8. DPP9 functions as an endogenous inhibitor of NLRP1 inflammasome in diverse primary cell types from human and mice. DPP8/9 inhibition via small molecule drugs and CRISPR/Cas9-mediated genetic deletion specifically activate human NLRP1 inflammasome, leading to ASC speck formation, pyroptotic cell death and secretion of cleaved IL-1ß. Mechanistically, DPP9 interacts with a unique auto-proteolytic domain (FIIND) found in NLRP1 and CARD8. This scaffolding function of DPP9 and its catalytic activity act synergistically to maintain NLRP1 in its inactive state and repress downstream inflammasome activation. We further identified a single patient-derived germline missense mutation in NLRP1 FIIND domain that abrogates DPP9 binding, leading to inflammasome hyper-activation seen in the Mendelian auto-inflammatory disease AIADK. These results unite recent findings on the regulation of murine Nlrp1b by Dpp8/9 and uncover a new regulatory mechanism for the NLRP1 inflammasome in primary human cells. Our results further suggest that DPP9 could be a multi-functional inflammasome regulator involved in human auto-inflammatory diseases.

9.
Bone ; 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30316000

RESUMO

Analysis of tissue from a 34-years-old male patient from Austrian origin with a history of multiple fractures associated with painful episodes over the carpal, tarsal and at the end of the long bones respectively is presented. Radiographic images and axial 3DCT scans showed widespread defects in trabecular bone architecture and ill-defined cortices over these skeletal sites in the form of discrete cystic-like lesions. Family history indicated two sisters (one half and one full biological sisters) also with a history of fractures. Whole exome sequencing revealed two heterozygous missense mutations in TYROBP (MIM 604142; NM_003332.3) gene encoding for a cell-surface adaptor protein, which is part of a signaling complex triggering activation of immune responses. It is expressed in cells of the ectoderm cell linage such as NK and dendritic cells, macrophages, monocytes, myeloid cells, microglia cells and osteoclasts. The phenotype and genotype of the patient were consistent with the diagnosis of Nasu-Hakola disease (NHD) (OMIM 221770). Investigations at the bone material level of a transiliac bone biopsy sample from the patient using polarized light microscopy and backscatter electron imaging revealed disordered lamellar collagen fibril arrangement and extensively increased matrix mineralization. These findings are the first bone material data in a patient with NHD and point toward an osteoclast defect involvement in this genetic condition.

10.
Nature ; 561(7722): E7, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29977062

RESUMO

In this Letter, the surname of author Lena Vlaminck was misspelled 'Vlaeminck'. In addition, author Kris Vleminckx should have been associated with affiliation 16 (Center for Medical Genetics, Ghent University, Ghent, Belgium). These have been corrected online.

11.
BMC Med Genet ; 19(1): 125, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-30041615

RESUMO

BACKGROUND: Cenani-Lenz Syndactyly (CLS) syndrome is a rare autosomal recessive disorder characterized by syndactyly and oligodactyly of fingers and toes, disorganization and fusion of metacarpals, metatarsals and phalanges, radioulnar synostosis and mesomelic shortness of the limbs, with lower limbs usually being much less affected than upper limbs. CASE PRESENTATION: we report here two patients, born to consanguineous Sri Lankan parents, present with bilateral postaxial oligodactyly limited to upper limbs. While the proband has no noticeable facial dysmorphism, renal impairments or cognitive impairments, his affected sister displays a few mild facial dysmorphic features. Whole exome sequencing of the proband showed a novel deleterious homozygous mutation (c.1348A > G) in the LRP4 gene, resulting in an Ile450-to-Val (I450V) substitution. CONCLUSION: This recessive mutation in LRP4 confirmed the diagnosis of CLS syndrome in two patients present with isolated hand syndactyly. This is the first reported case of CLS syndrome in a family of Sri Lankan origin.

12.
Nature ; 557(7706): 564-569, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29769720

RESUMO

The four R-spondin secreted ligands (RSPO1-RSPO4) act via their cognate LGR4, LGR5 and LGR6 receptors to amplify WNT signalling1-3. Here we report an allelic series of recessive RSPO2 mutations in humans that cause tetra-amelia syndrome, which is characterized by lung aplasia and a total absence of the four limbs. Functional studies revealed impaired binding to the LGR4/5/6 receptors and the RNF43 and ZNRF3 transmembrane ligases, and reduced WNT potentiation, which correlated with allele severity. Unexpectedly, however, the triple and ubiquitous knockout of Lgr4, Lgr5 and Lgr6 in mice did not recapitulate the known Rspo2 or Rspo3 loss-of-function phenotypes. Moreover, endogenous depletion or addition of exogenous RSPO2 or RSPO3 in triple-knockout Lgr4/5/6 cells could still affect WNT responsiveness. Instead, we found that the concurrent deletion of rnf43 and znrf3 in Xenopus embryos was sufficient to trigger the outgrowth of supernumerary limbs. Our results establish that RSPO2, without the LGR4/5/6 receptors, serves as a direct antagonistic ligand to RNF43 and ZNRF3, which together constitute a master switch that governs limb specification. These findings have direct implications for regenerative medicine and WNT-associated cancers.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Extremidades/embriologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Deformidades Congênitas dos Membros/genética , Receptores Acoplados a Proteínas-G/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Animais , Proteínas de Ligação a DNA/metabolismo , Feminino , Fibroblastos , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/metabolismo , Fenótipo , Receptores Acoplados a Proteínas-G/deficiência , Ubiquitina-Proteína Ligases/metabolismo , Xenopus/genética
13.
Elife ; 72018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29784083

RESUMO

Calcium/calmodulin-dependent protein kinase II (CAMK2) plays fundamental roles in synaptic plasticity that underlies learning and memory. Here, we describe a new recessive neurodevelopmental syndrome with global developmental delay, seizures and intellectual disability. Using linkage analysis and exome sequencing, we found that this disease maps to chromosome 5q31.1-q34 and is caused by a biallelic germline mutation in CAMK2A. The missense mutation, p.His477Tyr is located in the CAMK2A association domain that is critical for its function and localization. Biochemically, the p.His477Tyr mutant is defective in self-oligomerization and unable to assemble into the multimeric holoenzyme.In vivo, CAMK2AH477Y failed to rescue neuronal defects in C. elegans lacking unc-43, the ortholog of human CAMK2A. In vitro, neurons derived from patient iPSCs displayed profound synaptic defects. Together, our data demonstrate that a recessive germline mutation in CAMK2A leads to neurodevelopmental defects in humans and suggest that dysfunctional CAMK2 paralogs may contribute to other neurological disorders.

14.
J Biol Chem ; 293(25): 9841-9853, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29748383

RESUMO

Structural maintenance of chromosomes flexible hinge domain-containing 1 (Smchd1) plays important roles in epigenetic silencing and normal mammalian development. Recently, heterozygous mutations in SMCHD1 have been reported in two disparate disorders: facioscapulohumeral muscular dystrophy type 2 (FSHD2) and Bosma arhinia microphthalmia syndrome (BAMS). FSHD2-associated mutations lead to loss of function; however, whether BAMS is associated with loss- or gain-of-function mutations in SMCHD1 is unclear. Here, we have assessed the effect of SMCHD1 missense mutations from FSHD2 and BAMS patients on ATP hydrolysis activity and protein conformation and the effect of BAMS mutations on craniofacial development in a Xenopus model. These data demonstrated that FSHD2 mutations only result in decreased ATP hydrolysis, whereas many BAMS mutations can result in elevated ATPase activity and decreased eye size in Xenopus Interestingly, a mutation reported in both an FSHD2 patient and a BAMS patient results in increased ATPase activity and a smaller Xenopus eye size. Mutations in the extended ATPase domain increased catalytic activity, suggesting critical regulatory intramolecular interactions and the possibility of targeting this region therapeutically to boost SMCHD1's activity to counter FSHD.

15.
Eur J Med Genet ; 61(10): 585-595, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29605658

RESUMO

Mutations in CPLANE1 (previously known as C5orf42) cause Oral-Facial-Digital Syndrome type VI (OFD6) as well as milder Joubert syndrome (JS) phenotypes. Seven new cases from five unrelated families diagnosed with pure OFD6 were systematically examined. Based on the clinical manifestations of these patients and those described in the literature, we revised the diagnostic features of OFD6 and include the seven most common characteristics: 1) molar tooth sign, 2) tongue hamartoma and/or lobulated tongue, 3) additional frenula, 4) mesoaxial polydactyly of hands, 5) preaxial polydactyly of feet, 6) syndactyly and/or bifid toe, and 7) hypothalamic hamartoma. By whole or targeted exome sequencing, we identified seven novel germline recessive mutations in CPLANE1, including missense, nonsense, frameshift and canonical splice site variants, all causing OFD6 in these patients. Since CPLANE1 is also mutated in JS patients, we examined whether a genotype-phenotype correlation could be established. We gathered and compared 46 biallelic CPLANE1 mutations reported in 32 JS and 26 OFD6 patients. Since no clear correlation between paired genotypes and clinical outcomes could be determined, we concluded that patient's genetic background and gene modifiers may modify the penetrance and expressivity of CPLANE1 causal alleles. To conclude, our study provides a comprehensive view of the phenotypic range, the genetic basis and genotype-phenotype association in OFD6 and JS. The updated phenotype scoring system together with the identification of new CPLANE1 mutations will help clinicians and geneticists reach a more accurate diagnosis for JS-related disorders.

16.
Cancer Cell ; 33(3): 386-400.e5, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29478914

RESUMO

To identify novel targets for acute myeloid leukemia (AML) therapy, we performed genome-wide CRISPR-Cas9 screening using AML cell lines, followed by a second screen in vivo. Here, we show that the mRNA decapping enzyme scavenger (DCPS) gene is essential for AML cell survival. The DCPS enzyme interacted with components of pre-mRNA metabolic pathways, including spliceosomes, as revealed by mass spectrometry. RG3039, a DCPS inhibitor originally developed to treat spinal muscular atrophy, exhibited anti-leukemic activity via inducing pre-mRNA mis-splicing. Humans harboring germline biallelic DCPS loss-of-function mutations do not exhibit aberrant hematologic phenotypes, indicating that DCPS is dispensable for human hematopoiesis. Our findings shed light on a pre-mRNA metabolic pathway and identify DCPS as a target for AML therapy.

17.
Am J Hum Genet ; 102(1): 116-132, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29290337

RESUMO

Whole-exome and targeted sequencing of 13 individuals from 10 unrelated families with overlapping clinical manifestations identified loss-of-function and missense variants in KIAA1109 allowing delineation of an autosomal-recessive multi-system syndrome, which we suggest to name Alkuraya-Kucinskas syndrome (MIM 617822). Shared phenotypic features representing the cardinal characteristics of this syndrome combine brain atrophy with clubfoot and arthrogryposis. Affected individuals present with cerebral parenchymal underdevelopment, ranging from major cerebral parenchymal thinning with lissencephalic aspect to moderate parenchymal rarefaction, severe to mild ventriculomegaly, cerebellar hypoplasia with brainstem dysgenesis, and cardiac and ophthalmologic anomalies, such as microphthalmia and cataract. Severe loss-of-function cases were incompatible with life, whereas those individuals with milder missense variants presented with severe global developmental delay, syndactyly of 2nd and 3rd toes, and severe muscle hypotonia resulting in incapacity to stand without support. Consistent with a causative role for KIAA1109 loss-of-function/hypomorphic variants in this syndrome, knockdowns of the zebrafish orthologous gene resulted in embryos with hydrocephaly and abnormally curved notochords and overall body shape, whereas published knockouts of the fruit fly and mouse orthologous genes resulted in lethality or severe neurological defects reminiscent of the probands' features.

18.
J Invest Dermatol ; 138(2): 291-300, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28964717

RESUMO

Cole disease is a genodermatosis of pigmentation following a strict dominant mode of inheritance. In this study, we investigated eight patients affected with an overlapping genodermatosis after recessive inheritance. The patients presented with hypo- and hyperpigmented macules over the body, resembling dyschromatosis universalis hereditaria in addition to punctuate palmoplantar keratosis. By homozygosity mapping and whole-exome sequencing, a biallelic p.Cys120Arg mutation in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) was identified in all patients. We found that this mutation, like those causing dominant Cole disease, impairs homodimerization of the ENPP1 enzyme that is mediated by its two somatomedin-B-like domains. Histological analysis revealed structural and molecular changes in affected skin that were likely to originate from defective melanocytes because keratinocytes do not express ENPP1. Consistently, RNA-sequencing analysis of patient-derived primary melanocytes revealed alterations in melanocyte development and in pigmentation signaling pathways. We therefore conclude that germline ENPP1 cysteine-specific mutations, primarily affecting the melanocyte lineage, cause a clinical spectrum of dyschromatosis, in which the p.Cys120Arg allele represents a recessive and more severe form of Cole disease.

19.
Dev Cell ; 42(6): 655-666.e3, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28890073

RESUMO

Organogenesis during embryonic development occurs through the differentiation of progenitor cells. This process is extraordinarily accurate, but the mechanisms ensuring high fidelity are poorly understood. Coronary vessels of the mouse heart derive from at least two progenitor pools, the sinus venosus and endocardium. We find that the ELABELA (ELA)-APJ signaling axis is only required for sinus venosus-derived progenitors. Because they do not depend on ELA-APJ, endocardial progenitors are able to expand and compensate for faulty sinus venosus development in Apj mutants, leading to normal adult heart function. An upregulation of endocardial SOX17 accompanied compensation in Apj mutants, which was also seen in Ccbe1 knockouts, indicating that the endocardium is activated in multiple cases where sinus venosus angiogenesis is stunted. Our data demonstrate that by diversifying their responsivity to growth cues, distinct coronary progenitor pools are able to compensate for each other during coronary development, thereby providing robustness to organ development.


Assuntos
Proteínas de Transporte/metabolismo , Vasos Coronários/embriologia , Neovascularização Fisiológica , Receptores Acoplados a Proteínas-G/deficiência , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Receptores de Apelina , Vasos Coronários/metabolismo , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Endocárdio/metabolismo , Proteínas HMGB/metabolismo , Hipóxia/metabolismo , Hipóxia/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Miocárdio/patologia , Hormônios Peptídicos , Receptores Acoplados a Proteínas-G/metabolismo , Fatores de Transcrição SOXF/metabolismo , Transdução de Sinais , Regulação para Cima
20.
Am J Hum Genet ; 101(3): 391-403, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886341

RESUMO

In five separate families, we identified nine individuals affected by a previously unidentified syndrome characterized by growth retardation, spine malformation, facial dysmorphisms, and developmental delays. Using homozygosity mapping, array CGH, and exome sequencing, we uncovered bi-allelic loss-of-function CDK10 mutations segregating with this disease. CDK10 is a protein kinase that partners with cyclin M to phosphorylate substrates such as ETS2 and PKN2 in order to modulate cellular growth. To validate and model the pathogenicity of these CDK10 germline mutations, we generated conditional-knockout mice. Homozygous Cdk10-knockout mice died postnatally with severe growth retardation, skeletal defects, and kidney and lung abnormalities, symptoms that partly resemble the disease's effect in humans. Fibroblasts derived from affected individuals and Cdk10-knockout mouse embryonic fibroblasts (MEFs) proliferated normally; however, Cdk10-knockout MEFs developed longer cilia. Comparative transcriptomic analysis of mutant and wild-type mouse organs revealed lipid metabolic changes consistent with growth impairment and altered ciliogenesis in the absence of CDK10. Our results document the CDK10 loss-of-function phenotype and point to a function for CDK10 in transducing signals received at the primary cilia to sustain embryonic and postnatal development.


Assuntos
Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/fisiologia , Deficiências do Desenvolvimento/genética , Transtornos do Crescimento/genética , Mutação , Coluna Vertebral/anormalidades , Coluna Vertebral/patologia , Animais , Ciclo Celular , Proliferação de Células , Células Cultivadas , Criança , Pré-Escolar , Cílios/metabolismo , Cílios/patologia , Deficiências do Desenvolvimento/patologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Transtornos do Crescimento/patologia , Humanos , Lactente , Masculino , Camundongos , Camundongos Knockout , Linhagem , Fosforilação , Transdução de Sinais , Coluna Vertebral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA