Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Filtros adicionais











Intervalo de ano
1.
J Proteome Res ; 18(9): 3245-3258, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31317746

RESUMO

For the treatment of patients with prediabetes or diabetes, clinical evidence has emerged that ß-cell function can be restored by glucose-lowering therapeutic strategies. However, little is known about the molecular mechanisms underlying this functional adaptive behavior of the pancreatic ß-cell. This study examines the dynamic changes in protein expression and phosphorylation state associated with (pro)insulin production and secretory pathway function mediated by euglycemia to induce ß-cell rest in obese/diabetic db/db islet ß-cells. Unbiased quantitative profiling of the protein expression and phosphorylation events that occur upon ß-cell adaption during the transition from hyperglycemia to euglycemia was assessed in isolated pancreatic islets from obese diabetic db/db and wild-type (WT) mice using quantitative proteomics and phosphoproteomics together with bioinformatics analysis. Dynamic changes in the expression and phosphorylation of proteins associated with pancreatic ß-cell (pro)insulin production and complementary regulated-secretory pathway regulation were observed in obese diabetic db/db islets in a hyperglycemic environment, relative to WT mouse islets in a normal euglycemic environment, that resolved when isolated db/db islets were exposed to euglycemia for 12 h in vitro. By similarly treating WT islets in parallel, the effects of tissue culture could be mostly eliminated and only those changes associated with resolution by euglycemia were assessed. Among such regulated protein phosphorylation-dependent signaling events were those associated with COPII-coated vesicle-dependent ER exit, ER-to-Golgi trafficking, clathrin-coat disassembly, and a particular association for the luminal Golgi protein kinase, FAM20C, in control of distal secretory pathway trafficking, sorting, and granule biogenesis. Protein expression and especially phosphorylation play key roles in the regulation of (pro)insulin production, correlative secretory pathway trafficking, and the restoration of ß-cell secretory capacity in the adaptive functional ß-cell response to metabolic demand, especially that mediated by glucose.

2.
Mol Metab ; 25: 64-72, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31126840

RESUMO

OBJECTIVE: Understanding the mechanisms underlying the remarkable beneficial effects of gastric bypass surgery is important for the development of non-surgical therapies or less invasive surgeries in the fight against obesity and metabolic disease. Although the intestinal L-cell hormones glucagon-like peptide-1 (GLP-1) and peptide tyrosine-tyrosine (PYY) have attracted the most attention, direct tests in humans and rodents with pharmacological blockade or genetic deletion of either the GLP1-receptor (GLP1R) or the Y2-receptor (Y2R) were unable to confirm their critical roles in the beneficial effects gastric bypass surgery on body weight and glucose homeostasis. However, new awareness of the power of combinatorial therapies in the treatment of metabolic disease would suggest that combined blockade of more than one signaling pathway may be necessary to reverse the beneficial effects of bariatric surgery. METHODS: The metabolic effects of high-fat diet and the ability of Roux-en-Y gastric bypass surgery to lower food intake and body weight, as well as improve glucose handling, was tested in GLP1R and Y2R-double knockout (GLP1RKO/Y2RKO) and C57BL6J wildtype (WT) mice. RESULTS: GLP1RKO/Y2RKO and WT mice responded similarly for up to 20 weeks on high-fat diet and 16 weeks after RYGB. There were no significant differences in loss of body and liver weight, fat mass, reduced food intake, relative increase in energy expenditure, improved fasting insulin, glucose tolerance, and insulin tolerance between WT and GLP1RKO/Y2RKO mice after RYGB. CONCLUSIONS: Combined loss of GLP1R and Y2R-signaling was not able to negate or attenuate the beneficial effects of RYGB on body weight and glucose homeostasis in mice, suggesting that a larger number of signaling pathways is involved or that the critical pathway has not yet been identified.

3.
Eur Respir J ; 53(5)2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30923185

RESUMO

While traffic and air pollution exposure is associated with increased mortality in numerous diseases, its association with disease severity and outcomes in pulmonary arterial hypertension (PAH) remains unknown.Exposure to particulate matter with a 50% cut-off aerodynamic diameter ≤2.5 µm (PM2.5), nitrogen dioxide (NO2) and indirect measures of traffic-related air pollution (distance to main road and length of roads within buffer zones surrounding residential addresses) were estimated for 301 patients with idiopathic/heritable PAH recruited in the UK National Cohort Study of Idiopathic and Heritable PAH. Associations with transplant-free survival and pulmonary haemodynamic severity at baseline were assessed, adjusting for confounding variables defined a prioriHigher estimated exposure to PM2.5 was associated with higher risk of death or lung transplant (unadjusted hazard ratio (HR) 2.68 (95% CI 1.11-6.47) per 3 µg·m-3; p=0.028). This association remained similar when adjusted for potential confounding variables (HR 4.38 (95% CI 1.44-13.36) per 3 µg·m-3; p=0.009). No associations were found between NO2 exposure or other traffic pollution indicators and transplant-free survival. Conversely, indirect measures of exposure to traffic-related air pollution within the 500-1000 m buffer zones correlated with the European Society of Cardiology/European Respiratory Society risk categories as well as pulmonary haemodynamics at baseline. This association was strongest for pulmonary vascular resistance.In idiopathic/heritable PAH, indirect measures of exposure to traffic-related air pollution were associated with disease severity at baseline, whereas higher PM2.5 exposure may independently predict shorter transplant-free survival.

4.
Nat Commun ; 10(1): 714, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755615

RESUMO

Glucose homeostasis is partly controlled by the energy sensor mechanistic target of rapamycin (mTOR) in the muscle and liver. However, whether mTOR in the small intestine affects glucose homeostasis in vivo remains unknown. Here, we first report that delivery of rapamycin or an adenovirus encoding the dominant negative acting mTOR-mutated protein into the upper small intestine is sufficient to inhibit small intestinal mTOR signaling and lower glucose production in rodents with high fat diet-induced insulin resistance. Second, we found that molecular activation of small intestinal mTOR blunts the glucose-lowering effect of the oral anti-diabetic agent metformin, while inhibiting small intestinal mTOR alone lowers plasma glucose levels by inhibiting glucose production in rodents with diabetes as well. Thus, these findings illustrate that inhibiting upper small intestinal mTOR is sufficient and necessary to lower glucose production and enhance glucose homeostasis, and thereby unveil a previously unappreciated glucose-lowering effect of small intestinal mTOR.


Assuntos
Glicemia/metabolismo , Glucose/biossíntese , Intestino Delgado/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Adenoviridae/genética , Animais , Dieta Hiperlipídica , Homeostase , Resistência à Insulina , Intestino Delgado/efeitos dos fármacos , Masculino , Metformina/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
5.
Eur Respir J ; 53(3)2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30655285

RESUMO

Chronic thromboembolic pulmonary hypertension (CTEPH) is an important consequence of pulmonary embolism that is associated with abnormalities in haemostasis. We investigated the ADAMTS13-von Willebrand factor (VWF) axis in CTEPH, including its relationship with disease severity, inflammation, ABO groups and ADAMTS13 genetic variants.ADAMTS13 and VWF plasma antigen levels were measured in patients with CTEPH (n=208), chronic thromboembolic disease without pulmonary hypertension (CTED) (n=35), resolved pulmonary embolism (n=28), idiopathic pulmonary arterial hypertension (n=30) and healthy controls (n=68). CTEPH genetic ABO associations and protein quantitative trait loci were investigated. ADAMTS13-VWF axis abnormalities were assessed in CTEPH and healthy control subsets by measuring ADAMTS13 activity, D-dimers and VWF multimeric size.Patients with CTEPH had decreased ADAMTS13 (adjusted ß -23.4%, 95% CI -30.9- -15.1%, p<0.001) and increased VWF levels (ß +75.5%, 95% CI 44.8-113%, p<0.001) compared to healthy controls. ADAMTS13 levels remained low after reversal of pulmonary hypertension by pulmonary endarterectomy surgery and were equally reduced in CTED. We identified a genetic variant near the ADAMTS13 gene associated with ADAMTS13 protein that accounted for ∼8% of the variation in levels.The ADAMTS13-VWF axis is dysregulated in CTEPH. This is unrelated to pulmonary hypertension, disease severity or markers of systemic inflammation and implicates the ADAMTS13-VWF axis in CTEPH pathobiology.

6.
JCI Insight ; 4(1)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30626738

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a deadly disease of the small pulmonary vasculature with an increased prevalence of insulin resistance (IR). Insulin regulates both glucose and lipid homeostasis. We sought to quantify glucose- and lipid-related IR in human PAH, testing the hypothesis that lipoprotein indices are more sensitive indices of IR in PAH. METHODS: Oral glucose tolerance testing in PAH patients and triglyceride-matched (TG-matched) controls and proteomic, metabolomics, and lipoprotein analyses were performed in PAH and controls. Results were validated in an external cohort and in explanted human PAH lungs. RESULTS: PAH patients were similarly glucose intolerant or IR by glucose homeostasis metrics compared with control patients when matched for the metabolic syndrome. Using the insulin-sensitive lipoprotein index, TG/HDL ratio, PAH patients were more commonly IR than controls. Proteomic and metabolomic analysis demonstrated separation between PAH and controls, driven by differences in lipid species. We observed a significant increase in long-chain acylcarnitines, phosphatidylcholines, insulin metabolism-related proteins, and in oxidized LDL receptor 1 (OLR1) in PAH plasma in both a discovery and validation cohort. PAH patients had higher lipoprotein axis-related IR and lipoprotein-based inflammation scores compared with controls. PAH patient lung tissue showed enhanced OLR1 immunostaining within plexiform lesions and oxidized LDL accumulation within macrophages. CONCLUSIONS: IR in PAH is characterized by alterations in lipid and lipoprotein homeostasis axes, manifest by elevated TG/HDL ratio, and elevated circulating medium- and long-chain acylcarnitines and lipoproteins. Oxidized LDL and its receptor OLR1 may play a role in a proinflammatory phenotype in PAH. FUNDING: NIH DK096994, HL060906, UL1 RR024975-01, UL1 TR000445-06, DK020593, P01 HL108800-01A1, and UL1 TR002243; American Heart Association 13FTF16070002.

7.
Eur Heart J Cardiovasc Imaging ; 20(6): 668-676, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535300

RESUMO

AIMS: We sought to identify metabolic pathways associated with right ventricular (RV) adaptation to pulmonary hypertension (PH). We evaluated candidate metabolites, previously associated with survival in pulmonary arterial hypertension, and used automated image segmentation and parametric mapping to model their relationship to adverse patterns of remodelling and wall stress. METHODS AND RESULTS: In 312 PH subjects (47.1% female, mean age 60.8 ± 15.9 years), of which 182 (50.5% female, mean age 58.6 ± 16.8 years) had metabolomics, we modelled the relationship between the RV phenotype, haemodynamic state, and metabolite levels. Atlas-based segmentation and co-registration of cardiac magnetic resonance imaging was used to create a quantitative 3D model of RV geometry and function-including maps of regional wall stress. Increasing mean pulmonary artery pressure was associated with hypertrophy of the basal free wall (ß = 0.29) and reduced relative wall thickness (ß = -0.38), indicative of eccentric remodelling. Wall stress was an independent predictor of all-cause mortality (hazard ratio = 1.27, P = 0.04). Six metabolites were significantly associated with elevated wall stress (ß = 0.28-0.34) including increased levels of tRNA-specific modified nucleosides and fatty acid acylcarnitines, and decreased levels (ß = -0.40) of sulfated androgen. CONCLUSION: Using computational image phenotyping, we identify metabolic profiles, reporting on energy metabolism and cellular stress-response, which are associated with adaptive RV mechanisms to PH.

8.
Lancet Respir Med ; 7(3): 227-238, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30527956

RESUMO

BACKGROUND: Rare genetic variants cause pulmonary arterial hypertension, but the contribution of common genetic variation to disease risk and natural history is poorly characterised. We tested for genome-wide association for pulmonary arterial hypertension in large international cohorts and assessed the contribution of associated regions to outcomes. METHODS: We did two separate genome-wide association studies (GWAS) and a meta-analysis of pulmonary arterial hypertension. These GWAS used data from four international case-control studies across 11 744 individuals with European ancestry (including 2085 patients). One GWAS used genotypes from 5895 whole-genome sequences and the other GWAS used genotyping array data from an additional 5849 individuals. Cross-validation of loci reaching genome-wide significance was sought by meta-analysis. Conditional analysis corrected for the most significant variants at each locus was used to resolve signals for multiple associations. We functionally annotated associated variants and tested associations with duration of survival. All-cause mortality was the primary endpoint in survival analyses. FINDINGS: A locus near SOX17 (rs10103692, odds ratio 1·80 [95% CI 1·55-2·08], p=5·13 × 10-15) and a second locus in HLA-DPA1 and HLA-DPB1 (collectively referred to as HLA-DPA1/DPB1 here; rs2856830, 1·56 [1·42-1·71], p=7·65 × 10-20) within the class II MHC region were associated with pulmonary arterial hypertension. The SOX17 locus had two independent signals associated with pulmonary arterial hypertension (rs13266183, 1·36 [1·25-1·48], p=1·69 × 10-12; and rs10103692). Functional and epigenomic data indicate that the risk variants near SOX17 alter gene regulation via an enhancer active in endothelial cells. Pulmonary arterial hypertension risk variants determined haplotype-specific enhancer activity, and CRISPR-mediated inhibition of the enhancer reduced SOX17 expression. The HLA-DPA1/DPB1 rs2856830 genotype was strongly associated with survival. Median survival from diagnosis in patients with pulmonary arterial hypertension with the C/C homozygous genotype was double (13·50 years [95% CI 12·07 to >13·50]) that of those with the T/T genotype (6·97 years [6·02-8·05]), despite similar baseline disease severity. INTERPRETATION: This is the first study to report that common genetic variation at loci in an enhancer near SOX17 and in HLA-DPA1/DPB1 is associated with pulmonary arterial hypertension. Impairment of SOX17 function might be more common in pulmonary arterial hypertension than suggested by rare mutations in SOX17. Further studies are needed to confirm the association between HLA typing or rs2856830 genotyping and survival, and to determine whether HLA typing or rs2856830 genotyping improves risk stratification in clinical practice or trials. FUNDING: UK NIHR, BHF, UK MRC, Dinosaur Trust, NIH/NHLBI, ERS, EMBO, Wellcome Trust, EU, AHA, ACClinPharm, Netherlands CVRI, Dutch Heart Foundation, Dutch Federation of UMC, Netherlands OHRD and RNAS, German DFG, German BMBF, APH Paris, INSERM, Université Paris-Sud, and French ANR.

9.
Thorax ; 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478197

RESUMO

BACKGROUND: Aberrant lipoprotein metabolism has been implicated in experimental pulmonary hypertension, but the relevance to patients with pulmonary arterial hypertension (PAH) is inconclusive. OBJECTIVE: To investigate the relationship between circulating lipoprotein subclasses and survival in patients with PAH. METHODS: Using nuclear magnetic resonance spectroscopy, 105 discrete lipoproteins were measured in plasma samples from two cohorts of patients with idiopathic or heritable PAH. Data from 1124 plasma proteins were used to identify proteins linked to lipoprotein subclasses. The physical presence of proteins was confirmed in plasma lipoprotein subfractions separated by ultracentrifugation. RESULTS: Plasma levels of three lipoproteins from the small high-density lipoprotein (HDL) subclass, termed HDL-4, were inversely related to survival in both the discovery (n=127) and validation (n=77) cohorts, independent of exercise capacity, comorbidities, treatment, N-terminal probrain natriuretic peptide, C reactive protein and the principal lipoprotein classes. The small HDL subclass rich in apolipoprotein A-2 content (HDL-4-Apo A-2) exhibited the most significant association with survival. None of the other lipoprotein classes, including principal lipoprotein classes HDL and low-density lipoprotein cholesterol, were prognostic. Three out of nine proteins identified to associate with HDL-4-Apo A-2 are involved in the regulation of fibrinolysis, namely, the plasmin regulator, alpha-2-antiplasmin, and two major components of the kallikrein-kinin pathway (coagulation factor XI and prekallikrein), and their physical presence in the HDL-4 subfraction was confirmed. CONCLUSION: Reduced plasma levels of small HDL particles transporting fibrinolytic proteins are associated with poor outcomes in patients with idiopathic and heritable PAH.

10.
Diabetes ; 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305366

RESUMO

The onset of common obesity-linked type 2 diabetes (T2D) is marked by exhaustive failure of pancreatic ß-cell functional mass to compensate for insulin resistance and increased metabolic demand, leading to uncontrolled hyperglycemia. Here, the ß-cell deficient obese hyperglycemic/hyperinsulinemic KS db/db mouse model was used to assess consequential effects on ß-cell functional recovery by lowering glucose homeostasis and/or improving insulin sensitivity following treatment with thiazolidinedione (TZD) therapy or glucagon-like-peptide-1 receptor (GLP-1R) agonism alone, or in combination with sodium/glucose cotransporter-2 inhibition (SGLT-2i). SGLT-2i combination therapies improved glucose homeostasis, independent of changes in body weight, resulting in a synergistic increase in pancreatic insulin content marked by significant recovery of the ß-cell mature insulin secretory population, but with limited changes in ß-cell mass and no indication of ß-cell dedifferentiation. Restoration of ß-cell insulin secretory capacity also restored biphasic insulin secretion. These data emphasize that by therapeutically alleviating the demand for insulin in vivo, irrespective of weight loss, endogenous ß-cells recover significant function that can contribute to attenuating diabetes. Thus, this study provides evidence that alleviation of metabolic demand on the ß-cell, rather than targeting the ß-cell itself, could be effective to delay the progression of T2D.

11.
Sci Prog ; 101(4): 384-396, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376446
12.
Sci Prog ; 101(4): 397-410, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376447
13.
F1000Res ; 72018.
Artigo em Inglês | MEDLINE | ID: mdl-30079232

RESUMO

Pulmonary arterial hypertension (PAH) is a rare disorder with a high mortality rate. Treatment options have improved in the last 20 years, but patients still die prematurely of right heart failure. Though rare, it is heterogeneous at the genetic and molecular level, and understanding and exploiting this is key to the development of more effective treatments. BMPR2, encoding bone morphogenetic receptor type 2, is the most commonly affected gene in both familial and non-familial PAH, but rare mutations have been identified in other genes. Transcriptomic, proteomic, and metabolomic studies looking for endophenotypes are under way. There is no shortage of candidate new drug targets for PAH, but the selection and prioritisation of these are challenges for the research community.

14.
Sci Prog ; 101(3): 207-260, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30025551

RESUMO

A review is presented of the manufacture and use of different types of plastic, and the effects of pollution by these materials on animal, human and environmental health, insofar as this is known. Since 2004, the world has made as much plastic as it did in the previous half century, and it has been reckoned that the total mass of virgin plastics ever made amounts to 8.3 billion tonnes, mainly derived from natural gas and crude oil, used as chemical feedstocks and fuel sources. Between 1950 and 2015, a total of 6.3 billion tonnes of primary and secondary (recycled) plastic waste was generated, of which around 9% has been recycled, and 12% incinerated, with the remaining 79% either being stored in landfills or having been released directly into the natural environment. In 2015, 407 million tonnes (Mt) of plastic was produced, of which 164 Mt was consumed by packaging (36% of the total). Although quoted values vary, packaging probably accounts for around one third of all plastics used, of which approximately 40% goes to landfill, while 32% escapes the collection system. It has been deduced that around 9 Mt of plastic entered the oceans in 2010, as a result of mismanaged waste, along with up to 0.5 Mt each of microplastics from washing synthetic textiles, and from the abrasion of tyres on road surfaces. However, the amount of plastics actually measured in the oceans represents less than 1% of the (at least) 150 Mt reckoned to have been released into the oceans over time. Plastic accounts for around 10% by mass of municipal waste, but up to 85% of marine debris items - most of which arrive from land-based sources. Geographically, the five heaviest plastic polluters are P. R. China, Indonesia, Philippines, Vietnam and Sri Lanka, which between them contribute 56% of global plastic waste. Larger, primary plastic items can undergo progressive fragmentation to yield a greater number of increasingly smaller 'secondary' microplastic particles, thus increasing the overall surface area of the plastic material, which enhances its ability to absorb, and concentrate, persistent organic pollutants (POPs) such as dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs), with the potential to transfer them to the tissues of animals that ingest the microplastic particles, particularly in marine environments. Although fears that such microparticles and their toxins may be passed via food webs to humans are not as yet substantiated, the direct ingestion of microplastics by humans via drinking water is a distinct possibility - since 92% of samples taken in the USA and 72% in Europe showed their presence - although any consequent health effects are as yet unclear. Foodstuffs may also become contaminated by microplastics from the air, although any consequent health effects are also unknown. In regard to such airborne sources, it is noteworthy that small plastic particles have been found in human lung tissue, which might prove an adverse health issue under given circumstances. It is also very striking that microplastics have been detected in mountain soils in Switzerland, which are most likely windborne in origin. Arctic ice core samples too have revealed the presence of microplastics, which were most likely carried on ocean currents from the Pacific garbage patch, and from local pollution from shipping and fishing. Thus, sea ice traps large amounts of microplastics and transports them across the Arctic Ocean, but these particles will be released into the global environment when the ice melts, particularly under the influence of a rising mean global temperature. While there is a growing emphasis toward the substitution of petrochemically derived plastics by bioplastics, controversy has arisen in regard to how biodegradable the latter actually are in the open environment, and they presently only account for 0.5% of the total mass of plastics manufactured globally. Since the majority of bioplastics are made from sugar and starch materials, to expand their use significantly raises the prospect of competition between growing crops to supply food or plastics, similarly to the diversion of food crops for the manufacture of primary biofuels. The use of oxo-plastics, which contain additives that assist the material to degrade, is also a matter of concern, since it is claimed that they merely fragment and add to the environmental burden of microplastics; hence, the European Union has moved to restrict their use. Since 6% of the current global oil (including natural gas liquids, NGLs) production is used to manufacture plastic commodities - predicted to rise to 20% by 2050 - the current approaches for the manufacture and use of plastics (including their end-use) demand immediate revision. More extensive collection and recycling of plastic items at the end of their life, for re-use in new production, to offset the use of virgin plastic, is a critical aspect both for reducing the amount of plastic waste entering the environment, and in improving the efficiency of fossil resource use. This is central to the ideology underpinning the circular economy, which has common elements with permaculture, the latter being a regenerative design system based on 'nature as teacher', which could help optimise the use of resources in town and city environments, while minimising and repurposing 'waste'. Thus, food might be produced more on the local than the global scale, with smaller inputs of fuels (including transportation fuels for importing and distributing food), water and fertilisers, and with a marked reduction in the use of plastic packaging. Such an approach, adopted by billions of individuals, could prove of immense significance in ensuring future food security, and in reducing waste and pollution - of all kinds.

15.
Sci Prog ; 101(2): 192-204, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29898805
16.
World J Gastroenterol ; 24(16): 1748-1765, 2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29713129

RESUMO

AIM: To comprehensively evaluate mitochondrial (dys) function in preclinical models of nonalcoholic steatohepatitis (NASH). METHODS: We utilized two readily available mouse models of nonalcoholic fatty liver disease (NAFLD) with or without progressive fibrosis: Lepob/Lepob (ob/ob) and FATZO mice on high trans-fat, high fructose and high cholesterol (AMLN) diet. Presence of NASH was assessed using immunohistochemical and pathological techniques, and gene expression profiling. Morphological features of mitochondria were assessed via transmission electron microscopy and immunofluorescence, and function was assessed by measuring oxidative capacity in primary hepatocytes, and respiratory control and proton leak in isolated mitochondria. Oxidative stress was measured by assessing activity and/or expression levels of Nrf1, Sod1, Sod2, catalase and 8-OHdG. RESULTS: When challenged with AMLN diet for 12 wk, ob/ob and FATZO mice developed steatohepatitis in the presence of obesity and hyperinsulinemia. NASH development was associated with hepatic mitochondrial abnormalities, similar to those previously observed in humans, including mitochondrial accumulation and increased proton leak. AMLN diet also resulted in increased numbers of fragmented mitochondria in both strains of mice. Despite similar mitochondrial phenotypes, we found that ob/ob mice developed more advanced hepatic fibrosis. Activity of superoxide dismutase (SOD) was increased in ob/ob AMLN mice, whereas FATZO mice displayed increased catalase activity, irrespective of diet. Furthermore, 8-OHdG, a marker of oxidative DNA damage, was significantly increased in ob/ob AMLN mice compared to FATZO AMLN mice. Therefore, antioxidant capacity reflected as the ratio of catalase:SOD activity was similar between FATZO and C57BL6J control mice, but significantly perturbed in ob/ob mice. CONCLUSION: Oxidative stress, and/or the capacity to compensate for increased oxidative stress, in the setting of mitochondrial dysfunction, is a key factor for development of hepatic injury and fibrosis in these mouse models.


Assuntos
Antioxidantes/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , Animais , Catalase/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Dieta Hiperlipídica , Açúcares da Dieta , Modelos Animais de Doenças , Frutose , Fígado/ultraestrutura , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Mitocôndrias Hepáticas/ultraestrutura , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Fator 1 Nuclear Respiratório/metabolismo , Índice de Gravidade de Doença , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo , Fatores de Tempo
17.
Sci Prog ; 101(2): 121-160, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669627

RESUMO

Since pollination by insects is vitally important for much of global crop production, and to provide pollination services more widely throughout the planetary ecosystems, the prospect of an imminent 'pollination crisis', due to a die-off of flying insects, is most disquieting, to say the least. Indeed, the term 'ecological Armageddon' has been used in the media. However, to know whether or not a wholesale decline in flying pollinators (including non-bee species) is occurring across the world is very difficult, due to an insufficiency of geographically widespread and long-term data. Bees, as the best documented species, can be seen to be suffering from chronic exposure to a range of stressors, which include: a loss of abundance and diversity of flowers, and a decline in suitable habitat for them to build nests; long-term exposure to agrochemicals, including pesticides such as neonicotinoids; and infection by parasites and pathogens, many inadvertently spread by the actions of humans. It is likely that climate change may impact further on particular pollinators, for example bumble bees, which are cool-climate specialists. Moreover, the co-operative element of various different stress factors should be noted; thus, for example, exposure to pesticides is known to diminish detoxification mechanisms and also immune responses, hence lowering the resistance of bees to parasitic infections. It is further conspicuous that for those wild non-bee insects - principally moths and butterflies - where data are available, the picture is also one of significant population losses. Alarmingly, a recent study in Germany indicated that a decline in the biomass of flying insects had occurred by 76% in less than three decades, as sampled in nature reserves across the country. Accordingly, to fully answer the question posed in the title of this article 'pollinator decline - an ecological calamity in the making?' will require many more detailed, more geographically encompassing, more species-inclusive, and longer-term studies, but the available evidence points to a clear 'probably', and the precautionary principle would suggest this is not a prospect we can afford to ignore.

18.
Nat Commun ; 9(1): 1416, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650961

RESUMO

Pulmonary arterial hypertension (PAH) is a rare disorder with a poor prognosis. Deleterious variation within components of the transforming growth factor-ß pathway, particularly the bone morphogenetic protein type 2 receptor (BMPR2), underlies most heritable forms of PAH. To identify the missing heritability we perform whole-genome sequencing in 1038 PAH index cases and 6385 PAH-negative control subjects. Case-control analyses reveal significant overrepresentation of rare variants in ATP13A3, AQP1 and SOX17, and provide independent validation of a critical role for GDF2 in PAH. We demonstrate familial segregation of mutations in SOX17 and AQP1 with PAH. Mutations in GDF2, encoding a BMPR2 ligand, lead to reduced secretion from transfected cells. In addition, we identify pathogenic mutations in the majority of previously reported PAH genes, and provide evidence for further putative genes. Taken together these findings contribute new insights into the molecular basis of PAH and indicate unexplored pathways for therapeutic intervention.


Assuntos
Adenosina Trifosfatases/química , Aquaporina 1/química , Hipertensão Pulmonar Primária Familiar/genética , Fatores de Diferenciação de Crescimento/química , Proteínas de Membrana Transportadoras/química , Mutação , Fatores de Transcrição SOXF/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adulto , Aquaporina 1/genética , Aquaporina 1/metabolismo , Sequência de Bases , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Estudos de Casos e Controles , Hipertensão Pulmonar Primária Familiar/diagnóstico , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar Primária Familiar/patologia , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/metabolismo , Células HEK293 , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Prognóstico , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Sequenciamento Completo do Genoma
19.
Endocrinology ; 159(4): 1860-1872, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29522093

RESUMO

The adipocyte-derived hormone leptin acts via its receptor (LepRb) on central nervous system neurons to communicate the repletion of long-term energy stores, to decrease food intake, and to promote energy expenditure. We generated mice that express Cre recombinase from the calcitonin receptor (Calcr) locus (Calcrcre mice) to study Calcr-expressing LepRb (LepRbCalcr) neurons, which reside predominantly in the arcuate nucleus (ARC). Calcrcre-mediated ablation of LepRb in LepRbCalcrknockout (KO) mice caused hyperphagic obesity. Because LepRb-mediated transcriptional control plays a crucial role in leptin action, we used translating ribosome affinity purification followed by RNA sequencing to define the transcriptome of hypothalamic Calcr neurons, along with its alteration in LepRbCalcrKO mice. We found that ARC LepRbCalcr cells include neuropeptide Y (NPY)/agouti-related peptide (AgRP)/γ-aminobutyric acid (GABA) ("NAG") cells as well as non-NAG cells that are distinct from pro-opiomelanocortin cells. Furthermore, although LepRbCalcrKO mice exhibited dysregulated expression of several genes involved in energy balance, neither the expression of Agrp and Npy nor the activity of NAG cells was altered in vivo. Thus, although direct leptin action via LepRbCalcr cells plays an important role in leptin action, our data also suggest that leptin indirectly, as well as directly, regulates these cells.


Assuntos
Ingestão de Alimentos/fisiologia , Hipotálamo/metabolismo , Leptina/análogos & derivados , Neurônios/fisiologia , Receptores da Calcitonina/metabolismo , Receptores para Leptina/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Ingestão de Alimentos/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Leptina/farmacologia , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/metabolismo , Obesidade/genética , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptores para Leptina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA