Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 555
Filtrar
1.
Front Plant Sci ; 13: 860281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371164

RESUMO

Crop production worldwide is under pressure from multiple factors, including reductions in available arable land and sources of water, along with the emergence of new pathogens and development of resistance in pre-existing pathogens. In addition, the ever-growing world population has increased the demand for food, which is predicted to increase by more than 100% by 2050. To meet these needs, different techniques have been deployed to produce new cultivars with novel heritable mutations. Although traditional breeding continues to play a vital role in crop improvement, it typically involves long and laborious artificial planting over multiple generations. Recently, the application of innovative genome engineering techniques, particularly CRISPR-Cas9-based systems, has opened up new avenues that offer the prospects of sustainable farming in the modern agricultural industry. In addition, the emergence of novel editing systems has enabled the development of transgene-free non-genetically modified plants, which represent a suitable option for improving desired traits in a range of crop plants. To date, a number of disease-resistant crops have been produced using gene-editing tools, which can make a significant contribution to overcoming disease-related problems. Not only does this directly minimize yield losses but also reduces the reliance on pesticide application, thereby enhancing crop productivity that can meet the globally increasing demand for food. In this review, we describe recent progress in genome engineering techniques, particularly CRISPR-Cas9 systems, in development of disease-resistant crop plants. In addition, we describe the role of CRISPR-Cas9-mediated genome editing in sustainable agriculture.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36361099

RESUMO

With the increasing environmental and health problems caused by residential solid waste (RSW), upgrading waste disposal services has become a key priority in rural areas of developing countries. Waste disposal services can be improved by incorporating the end-user evaluation of the services and the infrastructure. This study aims to analyze the respondents' satisfaction with waste disposal services and infrastructure in rural China, which has not been well documented in the previous literature. For this purpose, we applied the ordered probit model on survey data of 1064 rural residents of Jiangxi, China. In two separate models, two independent variables, i.e., users' ranking of waste disposal management services and waste disposal management infrastructure, were regressed on five sets of policy, personal, social and demographic, environmental, and village characteristics of the respondents. Our results show that rural residents have relatively high satisfaction (level four out of five) with RSW services. We found a significant correlation between all five investigated characteristics (personal, social and demographic, environmental, and village characteristics) and respondents' satisfaction with RSW management. However, the correlation differs in magnitude and direction among different respondent groups, where gender, minority status, the sanitary condition of household toilets, and treatment of toilet waste at the village level have the largest influence on satisfaction. It was found that male respondents, ethnic minorities, residents with non-farming status, and respondents with more sanitary household toilets have higher satisfaction levels. Our results provide crucial references for decision-makers to effectively promote the further optimization and improvement of rural waste disposal systems in the future.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Masculino , Humanos , Satisfação Pessoal , China , Resíduos Sólidos/análise , Eliminação de Resíduos/métodos , População Rural
3.
Diagnostics (Basel) ; 12(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36428908

RESUMO

Claudins, as the major components of tight junctions, are crucial for epithelial cell-to-cell contacts. Recently, we showed that in endometriosis, the endometrial epithelial phenotype is highly conserved, with only minor alterations. For example, claudin-11 is strongly expressed; however, its localization in the endometriotic epithelial cells was impaired. In order to better understand the role of claudins in endometrial cell-to-cell contacts, we analyzed the tissue expression and localization of claudin-10 by immunohistochemistry analysis and two scoring systems. We used human tissue samples (n = 151) from the endometrium, endometriosis, and adenomyosis. We found a high abundance of claudin-10 in nearly all the endometrial (98%), endometriotic (98-99%), and adenomyotic (90-97%) glands, but no cycle-specific differences and no differences in the claudin-10 positive endometrial glands between cases with and without endometriosis. A significantly higher expression of claudin-10 was evident in the ectopic endometrium of deep-infiltrating (p < 0.01) and ovarian endometriosis (p < 0.001) and in adenomyosis in the cases with endometriosis (p ≤ 0.05). Interestingly, we observed a shift in claudin-10 from a predominant apical localization in the eutopic endometrium to a more pronounced basal/cytoplasmic localization in the ectopic endometria of all three endometriotic entities but not in adenomyosis. Significantly, despite the impaired endometriotic localization of claudin-10, the epithelial phenotype was retained. The significant differences in claudin-10 localization between the three endometriotic entities and adenomyosis, in conjunction with endometriosis, suggest that most of the aberrations occur after implantation and not before. The high similarity between the claudin-10 patterns in the eutopic endometrial and adenomyotic glands supports our recent conclusions that the endometrium is the main source of endometriosis and adenomyosis.

4.
J Mol Cell Cardiol ; 174: 1-14, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36370475

RESUMO

Familial cardiomyopathy is a precursor of heart failure and sudden cardiac death. Over the past several decades, researchers have discovered numerous gene mutations primarily in sarcomeric and cytoskeletal proteins causing two different disease phenotypes: hypertrophic (HCM) and dilated (DCM) cardiomyopathies. However, molecular mechanisms linking genotype to phenotype remain unclear. Here, we employ a systems approach by integrating experimental findings from preclinical studies (e.g., murine data) into a cohesive signaling network to scrutinize genotype to phenotype mechanisms. We developed an HCM/DCM signaling network model utilizing a logic-based differential equations approach and evaluated model performance in predicting experimental data from four contexts (HCM, DCM, pressure overload, and volume overload). The model has an overall prediction accuracy of 83.8%, with higher accuracy in the HCM context (90%) than DCM (75%). Global sensitivity analysis identifies key signaling reactions, with calcium-mediated myofilament force development and calcium-calmodulin kinase signaling ranking the highest. A structural revision analysis indicates potential missing interactions that primarily control calcium regulatory proteins, increasing model prediction accuracy. Combination pharmacotherapy analysis suggests that downregulation of signaling components such as calcium, titin and its associated proteins, growth factor receptors, ERK1/2, and PI3K-AKT could inhibit myocyte growth in HCM. In experiments with patient-specific iPSC-derived cardiomyocytes (MLP-W4R;MYH7-R723C iPSC-CMs), combined inhibition of ERK1/2 and PI3K-AKT rescued the HCM phenotype, as predicted by the model. In DCM, PI3K-AKT-NFAT downregulation combined with upregulation of Ras/ERK1/2 or titin or Gq protein could ameliorate cardiomyocyte morphology. The model results suggest that HCM mutations that increase active force through elevated calcium sensitivity could increase ERK activity and decrease eccentricity through parallel growth factors, Gq-mediated, and titin pathways. Moreover, the model simulated the influence of existing medications on cardiac growth in HCM and DCM contexts. This HCM/DCM signaling model demonstrates utility in investigating genotype to phenotype mechanisms in familial cardiomyopathy.

5.
Chem Biodivers ; 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36378844

RESUMO

The present study investigates the chemical composition, antioxidant and antimicrobial bioactivities of essential oil and n-hexane extract from Citrus limon leaves. The isolation of essential oil was carried out using the Clevenger apparatus. The percentage yield of essential oil and n-hexane extract from Citrus limon leaves was 0.59 and 0.50%, respectively. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging assay highlighted that Citrus limon leaves essential oil (CLEO) and n-hexane extract exhibited the significant antioxidant potential of 69.64 and 67.55%, respectively, compared to the BHT standard. Similarly, a significant inhibition in linoleic acid peroxidation was recorded in both CLEO (81.93%) and n-hexane extract (50.34%). Characterization of chemical constituents in CLEO and extract was executed using GC-MS, where Limonene was detected as a major compound in CLEO (60.52%) and n-hexane extract (73.62%). The haemolytic activity ranged from 2.46 to 5.75% revealing negligible cytotoxicity of CLEO and n-hexane extract. In silico studies agree with the in vitro antimicrobial studies, where vinimalol, taraxasterol, and moretenol present in CLEO showed strong interactions/inhibition against dihydroorotase and DNA gyrase from E. coli, and the tyrosyl-tRNA synthetase and DNA gyrase from S. aureus. Based on the current data, it may be concluded that both CLEO and n-hexane extract possessed significant bioactivities, such as antimicrobial and antioxidant activity, with minimal cytotoxicity.

6.
Front Plant Sci ; 13: 1019347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330239

RESUMO

Over the last two decades, the use of high-density SNP arrays and DNA sequencing have allowed scientists to uncover the majority of the genotypic space for various crops, including cotton. Genome-wide association study (GWAS) links the dots between a phenotype and its underlying genetics across the genomes of populations. It was first developed and applied in the field of human disease genetics. Many areas of crop research have incorporated GWAS in plants and considerable literature has been published in the recent decade. Here we will provide a comprehensive review of GWAS studies in cotton crop, which includes case studies on biotic resistance, abiotic tolerance, fiber yield and quality traits, current status, prospects, bottlenecks of GWAS and finally, thought-provoking question. This review will serve as a catalog of GWAS in cotton and suggest new frontiers of the cotton crop to be studied with this important tool.

7.
Nanomaterials (Basel) ; 12(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364695

RESUMO

Aluminum nitride (AlN) is a semiconductor material possessing a hexagonal wurtzite crystal structure with a large band gap of 6.2 eV. AlN thin films have several potential applications and areas for study, particularly in optoelectronics. This research study focused on the preparation of Ni-doped AlN thin films by using DC and RF magnetron sputtering for optoelectronic applications. Additionally, a comparative analysis was also carried out on the as-deposited and annealed thin films. Several spectroscopy and microscopy techniques were considered for the characterization of structural (X-ray diffraction), morphological (SEM), chemical bonding (FTIR), and emission (PL spectroscopy) properties. The XRD results show that the thin films have an oriented c-axis hexagonal structure. SEM analysis validated the granular-like morphology of the deposited sample, and FTIR results confirm the presence of chemical bonding in deposited thin films. The photoluminescence (PL) emission spectra exhibit different peaks in the visible region when excited at different wavelengths. A sharp and intense photoluminescence peak was observed at 426 nm in the violet-blue region, which can be attributed to inter-band transitions due to the incorporation of Ni in AlN. Most of the peaks in the PL spectra occurred due to direct-band recombination and indirect impurity-band recombination. After annealing, the intensity of all observed peaks increases drastically due to the development of new phases, resulting in a decrease in defects and a corresponding increase in the crystallinity of the thin film. The observed structural, morphological, and photoluminescence results suggest that Ni: AlN is a promising candidate to be used in optoelectronics applications, specifically in photovoltaic devices and lasers.

8.
Sci Rep ; 12(1): 18437, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323744

RESUMO

The aim of this article is to investigate the exact solution by using a new approach for the thermal transport phenomena of second grade fluid flow under the impact of MHD along with exponential heating as well as Darcy's law. The phenomenon has been expressed in terms of partial differential equations, then transformed the governing equations in non-dimentional form. For the sake of better rheology of second grade fluid, developed a fractional model by applying the new definition of Constant Proportional-Caputo hybrid derivative (CPC), Atangana Baleanu in Caputo sense (ABC) and Caputo Fabrizio (CF) fractional derivative operators that describe the generalized memory effects. For seeking exact solutions in terms of Mittag-Leffler and G-functions for velocity, temperature and concentration equations, Laplace integral transformation technique is applied. For physical significance of various system parameters on fluid velocity, concentration and temperature distributions are demonstrated through various graphs by using graphical software. Furthermore, for being validated the acquired solutions, accomplished a comparative analysis with some published work. It is also analyzed that for exponential heating and non-uniform velocity conditions, the CPC fractional operator is the finest fractional model to describe the memory effect of velocity, energy and concentration profile. Moreover, the graphical representations of the analytical solutions illustrated the main results of the present work. Also, in the literature, it is observed that to derived analytical results from fractional fluid models developed by the various fractional operators, is difficult and this article contributing to answer the open problem of obtaining analytical solutions the fractionalized fluid models.

9.
Ecotoxicol Environ Saf ; 248: 114295, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36402074

RESUMO

This sugar beet acts as a soil remediator in areas where there are high levels of boron (B) in the soil, since it has a high requirement of boron (B) for growth, and has strong resistance to high B levels. Although B toxicity in different plants has been widely researched, little is known about the response of photosystem II (PSII) activity in sugar beet leaves to B toxicity at present. To clarify the growth and photosynthetic physiological response of sugar beet to B toxicity, the effects of different concentrations of H3BO3 (0.05, 1.5, 2.5,3.5 mM) on the growth, photosynthetic characteristics and antioxidant defense system of sugar beet seedlings were investigated by hydroponic experiments. In the present study, high B stress inhibited the growth of sugar beet and significantly decreased the biomass of the plants. There was a remarkable increase in the accumulation of B in the shoots, which affected photosynthesis and decreased the photosynthetic pigments. As B toxicity increased, leaf PSII activities and maximum photochemical efficiency of PSII (Fv/Fm) showed a tendency to decrease; at the same time, the photosynthetic performance index based on absorbed light energy (PIABS) decreased as well. Meanwhile, the energy allocation parameters of the PSII reaction center were changed, the light energy utilization capacity and the energy used for electron transfer were reduced and the thermal dissipation was increased at the same time. Furthermore, B toxicity decreased catalase (CAT) activity, increased peroxidase (POD) and superoxide dismutase (SOD) activities, and increased malondialdehyde (MDA) accumulation. According to the results obtained in this study, high B concentrations reduced the rate of photosynthesis and fluorescence, thus weakened antioxidant defense systems, and therefore inhibited the growth of sugar beet plants. Thus, in high B areas, sugar beet possesses excellent tolerance to high B levels and has a high B translocation capacity, so it can be used as a phytoremediation tool. This study provides a basis for the feasibility of sugar beet resistant to high B environments.

10.
Int Immunopharmacol ; 113(Pt B): 109434, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36402068

RESUMO

Cancer immunotherapy is proposed to eradicate tumors by stimulating host anti-tumor immunity through utilizing various therapeutic approaches. Cancer vaccines have become a promising approach for cancer immunotherapy among the proposed platforms, either alone or in combination with other therapeutic agents. Due to the suboptimal efficacy of cancer vaccines in clinical trials and the advent of nanotechnology in the biomedicine field, scientists developed nanoplatforms, such as various nanoparticles (NPs), cell-derived components, and nanocomplexes, to deliver vaccine components to target cells and tissues, thereby supporting their anti-tumor efficacy and minimizing adverse side effects. To increase the therapeutic effects of nanovaccines in cancer therapy, dendritic cell (DC) targeting through the modulation of the structure of the vaccines, such as using DC-specific ligands, has attracted extensive interest. Here, we reviewed the various forms of nanovaccines in cancer therapy and their therapeutic effects; we highlighted the properties and functions of DCs as the main antigen-presenting cells in immune responses and focused on targeting DCs in developing nanovaccines.

11.
Plants (Basel) ; 11(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365397

RESUMO

The effects of the increased soil copper (Cu) on fruit quality due to the overuse of Cu agents have been a hot social issue. Seven representative citrus orchards in Guangxi province, China, were investigated to explore the fruit quality characteristics under different soil Cu levels and the relationship between soil-tree Cu and fruit quality. These results showed that pericarp color a value, titratable acid (TA), and vitamin C (Vc) were higher by 90.0, 166.6, and 22.4% in high Cu orchards and by 50.5, 204.2, and 55.3% in excess Cu orchards, compared with optimum Cu orchards. However, the ratio of total soluble solids (TSS)/TA was lower by 68.7% in high Cu orchards and by 61.6% in excess Cu orchards. With the increase of soil Cu concentrations, pericarp color a value and Vc were improved, TA with a trend of rising first then falling, and TSS/TA with a trend of falling first then rising were recorded. As fruit Cu increased, pericarp color a value and TSS reduced and as leaf Cu increased, TSS/TA decreased while Vc was improved. Moreover, a rise in soil Cu enhanced leaf Cu accumulation, and a rise in leaf Cu improved fruit Cu accumulation. Fruit Cu accumulation reduced fruit quality by direct effects, leaf Cu improved fruit quality by direct and indirect effects. Soil Cu affected fruit quality by indirect effects by regulating leaf Cu and fruit Cu. Therefore, reasonable regulation and control of soil Cu concentrations can effectively increase pericarp color, sugar, and acid accumulation in citrus fruit.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36212951

RESUMO

Polycystic ovarian syndrome (PCOS) is an heterogenous, endocrine, metabolic, and multidisciplinary disorder of reproductive-aged females that aggravates insulin resistance, hyperandrogenism, obesity, menstrual irregularities, and infertility. Bitter melon is consumed as vegetable in various parts of the world. The purpose of this study was to provide the rationale for the folkloric uses of bitter melon (Momordica charantia L.) in reproductive abnormalities. HPLC analysis of standardized aqueous methanolic extract of bitter melon revealed the presence of various phytochemicals such as quercetin, gallic acid, benzoic acid, chlorogenic acid, syringic acid, p-coumaric acid, ferulic acid, and cinnamic acid. Twenty-five Swiss albino adult female rats (120-130 g) were acquired and divided into two groups (5 + 20). Letrozole (1 mg/kg p.o.) was used for four weeks to induce PCOS in twenty rats. Disease induction was confirmed by vaginal smear cytology analysis under the microscope. Animals were further divided into four groups, with one group as PCOS group, and the remaining three are treated with standardized extract of bitter melon (500 mg/kg p.o.), bitter melon plus metformin (500 mg/kg p.o.), and metformin alone for the period of next four weeks. After four weeks, the rats were euthanized at diestrus stage. Ovaries of the experimental animals were removed and fixed in 10% buffered formalin, and blood samples were obtained from direct cardiac puncture and stored. Ovaries histopathological analysis showed cystic follicles (9-10) in PCOS group, while, in all the treatment groups, we found developing and mature follicles. Similarly, hormone analysis showed significant (p < 0.001) reduction of LH surge, insulin, and testosterone levels and improvement in FSH levels. Lipid profile and antioxidant enzymes status were also significantly (p < 0.001) improved. In conclusion, the study validates the bitter melon potential as an insulin sensitizer and ovulation enhancer and authenticates its potential in PCOS management.

13.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234756

RESUMO

Background: Type 2 diabetes mellitus (DM2) is a chronic and sometimes fatal condition which affects people all over the world. Nanotherapeutics have shown tremendous potential to combat chronic diseases-including DM2-as they enhance the overall impact of drugs on biological systems. Greenly synthesized silver nanoparticles (AgNPs) from Catharanthus roseus methanolic extract (C. AgNPs) were examined primarily for their cytotoxic and antidiabetic effects. Methods: Characterization of C. AgNPs was performed by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and atomic force microscopy (AFM). The C. AgNPs were trialed on Vero cell line and afterwards on an animal model (rats). Results: The C. AgNPs showed standard structural and functional characterization as revealed by FTIR and XRD analyses. The zetapotential analysis indicated stability while EDX analysis confirmed the formation of composite capping with Ag metal. The cytotoxic effect (IC50) of C. AgNPs on Vero cell lines was found to be 568 g/mL. The animal model analyses further revealed a significant difference in water intake, food intake, body weight, urine volume, and urine sugar of tested rats after treatment with aqueous extract of C. AgNPs. Moreover, five groups of rats including control and diabetic groups (NC1, PC2, DG1, DG2, and DG3) were investigated for their blood glucose and glycemic control analysis. Conclusions: The C. AgNPs exhibited positive potential on the Vero cell line as well as on experimental rats. The lipid profile in all the diabetic groups (DG1-3) were significantly increased compared with both of the control groups (p < 0.05). The present study revealed the significance of C. AgNPs in nanotherapeutics.


Assuntos
Catharanthus , Diabetes Mellitus Tipo 2 , Nanopartículas Metálicas , Animais , Antibacterianos/farmacologia , Glicemia , Catharanthus/química , Linhagem Celular , Hipoglicemiantes/farmacologia , Lipídeos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Difração de Raios X
14.
Front Plant Sci ; 13: 986991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311131

RESUMO

Copper (Cu2+) toxicity can inhibit plant growth and development. It has been shown that silicon (Si) can relieve Cu2+ stress. However, it is unclear how Si-nanoparticles (SiNPs) relieve Cu2+ stress in wheat seedlings. Therefore, the current study was conducted by setting up four treatments: CK, SiNP: (2.5 mM), Cu2+: (500 µM), and SiNP+Cu2+: (2.5 mM SiNP+500 µM Cu2+) to explore whether SiNPs can alleviate Cu2+ toxicity in wheat seedlings. The results showed that Cu2+ stress hampered root and shoot growth and accumulated high Cu2+ concentrations in roots (45.35 mg/kg) and shoots (25.70 mg/kg) of wheat as compared to control treatment. Moreover, Cu2+ treatment inhibited photosynthetic traits and chlorophyll contents as well as disturbed the antioxidant defense system by accumulating malondialdehyde (MDA) and hydrogen peroxidase (H2O2) contents. However, SiNPs treatment increased root length and shoot height by 15.1% and 22%, respectively, under Cu2+ toxicity. Moreover, SiNPs application decreased MDA and H2O2 contents by 31.25% and 19.25%, respectively. SiNPs increased non-enzymatic compounds such as ascorbic acid-glutathione (AsA-GSH) and enhanced superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbic peroxidase (APX) activities by 77.5%, 141.7%, 68%, and 80%, respectively. Furthermore, SiNPs decreased Cu2+ concentrations in shoots by 26.2%, as compared to Cu2+ treatment alone. The results concluded that SiNPs could alleviate Cu2+ stress in wheat seedlings. The present investigation may help to increase wheat production in Cu2+ contaminated soils.

15.
J Plant Physiol ; 279: 153835, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257086

RESUMO

Bud dormancy and its release are complex physiological phenomena in plants. The molecular mechanisms of bud dormancy in Liriodendron chinense are mainly unknown. Here, we studied bud dormancy and the related physiological and molecular phenomena in Liriodendron under long-day (LD) and short-day (SD). Bud burst was released faster under LD than under SD. Abscisic acid (ABA), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) activities were increased significantly under LD in Liriodendron buds. In contrast, the contents of gibberellic acid (GA3), ascorbic acid (AsA), glutathione (GSH), malondialdehyde (MDA), and ascorbate peroxidase (APX) activity decreased under LD but increased under SD. Differentially expressed genes (DEGs) were up-regulated under LD and down-regulated under SD and these changes correspondingly promoted (LD) or repressed (SD) cell division and the number and/or size of cells in the bud. Transcriptomic analysis of Liriodendron buds under different photoperiods identified 187 DEGs enriched in several pathways such as flavonoid biosynthesis and phenylpropanoid biosynthesis, plant hormone and signal transduction, etc. that are associated with antioxidant enzymes, non-enzymatic antioxidants, and subsequently promote the growth of the buds. Our findings provide novel insights into regulating bud dormancy via flavonoid and phenylpropanoid biosynthesis, plant hormone and signal transduction pathways, and ABA content. These physiological and biochemical traits would help detect bud dormancy in plants.


Assuntos
Liriodendron , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Fotoperíodo , Liriodendron/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Flavonoides , Dormência de Plantas/genética
16.
Expert Rev Hematol ; 15(10): 893-909, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36217841

RESUMO

INTRODUCTION: Evidence related to the national burden of Sickle Cell Disease (SCD) in Gulf Cooperation Council (GCC) largely fragmented. Thus, the aim of this study is to systemically review studies from GCC countries to assess the epidemiological profile of SCD. AREAS COVERED: We searched combinations of key terms in MEDLINE/PubMed, CINAHL, and EMBASE. We selected relevant observational studies reporting the frequency, incidence, prevalence, risk factors, mortality rate, and complications of SCD among the GCC population. Studies restricted to laboratory diagnostic tests, experimental and animal studies, review articles, case reports and series, and conference proceedings and editorials were excluded. A total of 1,347 articles were retrieved, out of which 98 articles were found to be eligible and included in the study. The total number of participants from all the included studies was 3,496,447. The prevalence of SCD ranged from 0.24%-5.8% across the GCC and from 1.02%-45.8% for the sickle cell trait. Consanguineous marriage was a risk factor for likely giving children affected with hemoglobinopathies. EXPERT OPINION: The prevalence of SCD and its complications vary among GCC. Because of the high prevalence of SCD and its complications, health authorities should focus on more rigorous prevention and treatment strategies.


Assuntos
Anemia Falciforme , Hemoglobinopatias , Humanos , Anemia Falciforme/complicações , Anemia Falciforme/diagnóstico , Anemia Falciforme/epidemiologia , Prevalência , Fatores de Risco
17.
PLoS One ; 17(10): e0276524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264847

RESUMO

The poultry sector is the most vibrant segment of the agriculture system plays a vital role in the supply of healthy meat products. Broiler production effectiveness is greatly associated with feed formulation. Although, broiler exhibits a relatively fast growth rate, the nutritional profile of its meat has been criticized under conventional human dietary regimes. In the current study, the dietary inclusion of quinoa was assessed to improve broiler growth performance, carcass quality, and health by analyzing different growth, hematological and biochemical, immunological parameters. In the present study, the chicken was fed with 50 g/kg, 100 g/kg, and 200 g/kg quinoa enriched diets in two different experimental groups during the growth phase or finisher phase while chicken fed with diet without quinoa were as control. The 50 g/kg quinoa supplemented chicken group revealed a substantial difference in growth performance in comparison with the control group. In addition, the examination of quinoa dietary supplementation on carcass quality exhibited variable behavior. Further, all the study groups fed with quinoa during the growth phase revealed no remarkable difference in the hematological profile in contrast to the control group except for the chicken group fed (50 g/Kg) during the finisher phase for hemoglobin levels. Likewise, all the quinoa enriched diet given chicken groups showed no significant difference in serum biochemical profile in contrast to the control group except for the 50 g/Kg quinoa fed chicken group during the finisher phase for total globulin levels. In addition, the examination of quinoa dietary supplementation on the broiler serum lipid profile was also assessed and birds exhibited variable behavior as the result of quinoa dietary supplementation. Evaluation of short-term immune response after quinoa supplementation assessed and birds exhibited no marked significance on expression outcomes of interleukin/cytokines (IL 1 beta, IL-6, IL-10) assessed by qRT-PCR analysis. In conclusion, the dietary supplementation of broiler fed with quinoa seeds can enhance the growth performance and the carcass quality of broiler.


Assuntos
Chenopodium quinoa , Globulinas , Humanos , Animais , Galinhas , Fenômenos Fisiológicos da Nutrição Animal , Ração Animal/análise , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Dieta/veterinária , Globulinas/metabolismo , Hemoglobinas/metabolismo , Lipídeos
18.
Sensors (Basel) ; 22(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298388

RESUMO

In recent research developments, the application of mobile agents (MAs) has attracted extensive research in wireless sensor networks (WSNs) due to the unique benefits it offers, such as energy conservation, network bandwidth saving, and flexibility of open usage for various WSN applications. The majority of the proposed research ideas on dynamic itinerary planning agent-based algorithms are efficient when dealing with node failure as a result of energy depletion. However, they generate inefficient groups for MAs itineraries, which introduces a delay in broadcasting data return back to the sink node, and they do not consider the expanding size of the MAs during moving towards a sequence of related nodes. In order to rectify these research issues, we propose a new Graph-based Dynamic Multi-Mobile Agent Itinerary Planning approach (GDMIP). GDMIP works with "Directed Acyclic Graph" (DAG) techniques and distributes sensor nodes into various and efficient group-based shortest-identified routes, which cover all nodes in the network using intuitionistic fuzzy sets. MAs are restricted from moving in the predefined path and routes and are responsible for collecting data from the assigned groups. The experimental results of our proposed work show the effectiveness and expediency compared to the published approaches. Therefore, our proposed algorithm is more energy efficient and effective for task delay (time).


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Algoritmos
19.
Front Plant Sci ; 13: 998867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304402

RESUMO

Nicosulfuron is an herbicide widely used in corn fields. In northeast China, sugar beet is often planted adjacent to corn, resulting in frequent phytotoxicity of nicosulfuron drift in sugar beet fields. This study was conducted by spraying nicosulfuron to assess the phytotoxicity and clarify the mechanism of nicosulfuron toxicity on sugar beet. The results showed that nicosulfuron impaired growth and development by reducing photosynthetic capacity and disrupting antioxidant systems at a lethal dose of 81.83 g a.i. ha-1. Nicosulfuron damaged the function of photosynthetic system II (PSII), lowered photosynthetic pigment content, and inhibited photosynthetic efficiency. Compared with the control, the electron transfer of PSII was blocked. The ability of PSII reaction centers to capture and utilize light energy was reduced, resulting in a weakened photosynthetic capacity. The maximum net photosynthetic rate (Amax), light saturation point (LSP), and apparent quantum yield (AQY) decreased gradually as the nicosulfuron dose increased, whereas the light compensation point (LCP) and dark respiration (Rd) increased. Nicosulfuron led to reactive oxygen species (ROS) accumulation in sugar beet leaf, a significant rise in malondialdehyde (MDA) content, electrolytic leakage (EL), and considerable oxidative damage to the antioxidant system. This study is beneficial for elucidating the effects of nicosulfuron toxicity on sugar beet, in terms of phytotoxicity, photosynthetic physiology, and antioxidative defense system.

20.
Dose Response ; 20(4): 15593258221132080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262717

RESUMO

Disruption of quorum sensing pathway of pathogenic microbes is considered as novel approach to fight against infectious diseases. The current study was planned to evaluate the antibiofilm and quorum sensing inhibitory potential of Lagerstroemia speciosa. Antibacterial and antibiofilm potential of L. speciosa extracts was determined through agar well diffusion and crystal violet assay against sinusitis isolates, that is, Staphylococcus aureus, Enterococcus faecalis, Proteus mirabilis, and Klebsiella pneumoniae, while quorum sensing inhibition efficacy of L. speciosa extracts was determined through violacein inhibition assay using Chromobacterium pseudoviolaceum as bacterial model. The methanolic extract of L. speciosa presented the highest antimicrobial activity against E. faecalis and antibiofilm activity against K. pneumoniae (77.42 ± 1.51%), while n-hexane extract was found to be least active against all tested bacterial strains. Quorum sensing inhibition activity of L. speciosa extracts against C. pseudoviolaceum showed significant dose-dependent inhibition in violacein production by different concentrations of methanolic extract. Furthermore, none of the extracts of L. speciosa showed any hemolytic activity against human RBCs and hold considerable thrombolytic potential in comparison to streptokinase (75.9 ± .46%). In conclusion, findings suggest that L. speciosa leaves are excellent source of phytochemicals with potent antibiofilm and quorum sensing inhibition potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...