Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360742

RESUMO

Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are emerging as a new treatment strategy for heart failure with reduced ejection fraction (HFrEF) and-depending on the wistfully awaited results of two clinical trials (DELIVER and EMPEROR-Preserved)-may be the first drug class to improve cardiovascular outcomes in patients suffering from heart failure with preserved ejection fraction (HFpEF). Proposed mechanisms of action of this class of drugs are diverse and include metabolic and hemodynamic effects as well as effects on inflammation, neurohumoral activation, and intracellular ion homeostasis. In this review we focus on the growing body of evidence for SGLT2i-mediated effects on cardiac intracellular Na+ as an upstream mechanism. Therefore, we will first give a short overview of physiological cardiomyocyte Na+ handling and its deterioration in heart failure. On this basis we discuss the salutary effects of SGLT2i on Na+ homeostasis by influencing NHE1 activity, late INa as well as CaMKII activity. Finally, we highlight the potential relevance of these effects for systolic and diastolic dysfunction as well as arrhythmogenesis.


Assuntos
Arritmias Cardíacas/tratamento farmacológico , Cardiotônicos/uso terapêutico , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Transportador 2 de Glucose-Sódio/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Humanos , Miocárdio/patologia , Miócitos Cardíacos/patologia
2.
ESC Heart Fail ; 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32946200

RESUMO

AIMS: Recent clinical trials have proven gliflozins to be cardioprotective in diabetic and non-diabetic patients. However, the underlying mechanisms are incompletely understood. A potential inhibition of cardiac Na+ /H+ exchanger 1 (NHE1) has been suggested in animal models. We investigated the effect of empagliflozin on NHE1 activity in human atrial cardiomyocytes. METHODS AND RESULTS: Expression of NHE1 was assessed in human atrial and ventricular tissue via western blotting. NHE activity was measured as the maximal slope of pH recovery after NH4 + pulse in isolated carboxy-seminaphtarhodafluor 1 (SNARF1)-acetoxymethylester-loaded murine ventricular and human atrial cardiomyocytes. NHE1 is abundantly expressed in human atrial and ventricular tissue. Interestingly, compared with patients without heart failure (HF), atrial NHE1 expression was significantly increased in patients with HF with preserved ejection fraction and atrial fibrillation. The largest increase in atrial and ventricular NHE1 expression, however, was observed in patients with end-stage HF undergoing heart transplantation. Importantly, acute exposure to empagliflozin (1 µmol/L, 10 min) significantly inhibited NHE activity to a similar extent in human atrial myocytes and mouse ventricular myocytes. This inhibition was also achieved by incubation with the well-described selective NHE inhibitor cariporide (10 µmol/L, 10 min). CONCLUSIONS: This is the first study systematically analysing NHE1 expression in human atrial and ventricular myocardium of HF patients. We show that empagliflozin inhibits NHE in human cardiomyocytes. The extent of NHE inhibition was comparable with cariporide and may potentially contribute to the improved outcome of patients in clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...